Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MIKULKA, J.; KOUAKOUO NOMVUSSI, S.
Originální název
Enhanced Image Reconstruction in Electrical Impedance Tomography using Radial Basis Function Neural Networks
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper presents a novel cascade algorithm for image reconstruction in electrical impedance tomography (EIT) using radial basis function neural networks. The first subnetwork applies a density-based algorithm and k-nearest neighbors (KNN) to determine the center and width of the radial basis function neural networks, with the aim of preventing ill-conditioned connection weights between the hidden and output layers. The second subnetwork is a generalized regression neural network dedicated to functional approximation. The combined subnetworks result in a reduced mean square error and achieve an accuracy of 89.54 % without noise and an accuracy between 82.90 % and 89.53 % with noise levels ranging from 30 to 60 dB. In comparison, the original radial basis function neural networks (RBFNN) method achieves an accuracy of 85.44 % without noise and between 80.90 % and 85.31 % under similar noise conditions. The total variation (TV) method achieves 83.13 % without noise, with noise-influenced accuracy ranging from 34.28 % to 45.15 %. The Gauss-Newton method achieves 82.35 % accuracy without noise, with accuracy ranging from 33.21 % to 46.15 % in the presence of noise. The proposed method proves to be resilient to various types of noise, including white Gaussian noise, impulsive noise, and contact noise, and consistently delivers superior performance. It also outperforms the other methods in noise-free conditions. The reliability of the method in noisy environments supports its potential application in the development of new modular systems for electrical impedance tomography.
Anglický abstrakt
Klíčová slova
Artificial neural network, density-based algorithm, electrical impedance tomography, k-nearest neighbors, radial basis function neural networks, EIDORS framework
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
16.12.2024
Nakladatel
Sciendo
ISSN
1335-8871
Periodikum
Measurement Science Review
Svazek
24
Číslo
6
Stát
Slovenská republika
Strany od
200
Strany do
210
Strany počet
11
URL
https://sciendo.com/article/10.2478/msr-2024-0027
Plný text v Digitální knihovně
http://hdl.handle.net/11012/251601
BibTex
@article{BUT193528, author="Serge Ayme {Kouakouo Nomvussi} and Jan {Mikulka}", title="Enhanced Image Reconstruction in Electrical Impedance Tomography using Radial Basis Function Neural Networks", journal="Measurement Science Review", year="2024", volume="24", number="6", pages="200--210", doi="10.2478/msr-2024-0027", issn="1335-8871", url="https://sciendo.com/article/10.2478/msr-2024-0027" }
Dokumenty
Enhanced-Image-Reconstruction-in-Electrical-Impedance-Tomography-using-Radial-Basis-Function-Neural-Networks