Detail publikačního výsledku

Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products

RAGHUPATHY, B. K.; VAIRAVASUNDRAM, S.; GANESAN, M.; NAMACHIVAYAM, R. K.; KOTECHA, K.; HERENCSÁR, N.

Originální název

Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products

Anglický název

Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products

Druh

Článek WoS

Originální abstrakt

Product tracking applications utilize the Internet of Things and cyber-physical systems to identify permitted or unauthorized user intrusions into the system. Classical machine learning algorithms cannot detect every risk in an environment that evolves constantly and where new abnormalities are visible. This article investigates the potential of quantum machine learning (QML) for real-time product purchase monitoring and intrusion detection using an enhanced quantum convolutional neural network (EQCNN) with signature-based detection over a massive volume of search space data (qubits). We suggest a three-stage technique to effectively handle the sensitive content: Pre-processing, EQCNN-based feature extraction, and syntactic pattern recognition. Signature-based identification is a feature of the EQCNN architecture that helps detect particular patterns linked to goods purchases or invasions. The model can minimize product tracking mistakes by utilizing the QML-based EQCNN with signature-based detection, resulting in a more efficient supply chain.

Anglický abstrakt

Product tracking applications utilize the Internet of Things and cyber-physical systems to identify permitted or unauthorized user intrusions into the system. Classical machine learning algorithms cannot detect every risk in an environment that evolves constantly and where new abnormalities are visible. This article investigates the potential of quantum machine learning (QML) for real-time product purchase monitoring and intrusion detection using an enhanced quantum convolutional neural network (EQCNN) with signature-based detection over a massive volume of search space data (qubits). We suggest a three-stage technique to effectively handle the sensitive content: Pre-processing, EQCNN-based feature extraction, and syntactic pattern recognition. Signature-based identification is a feature of the EQCNN architecture that helps detect particular patterns linked to goods purchases or invasions. The model can minimize product tracking mistakes by utilizing the QML-based EQCNN with signature-based detection, resulting in a more efficient supply chain.

Klíčová slova

Quantum computing; Qubit; Quantum circuit; Feature extraction; Computers; Logic gates; Consumer electronics; Machine learning; Kernel; Data models; Convolutional neural network; quantum machine learning; RFID product tracking; SBD; signature-based detection

Klíčová slova v angličtině

Quantum computing; Qubit; Quantum circuit; Feature extraction; Computers; Logic gates; Consumer electronics; Machine learning; Kernel; Data models; Convolutional neural network; quantum machine learning; RFID product tracking; SBD; signature-based detection

Autoři

RAGHUPATHY, B. K.; VAIRAVASUNDRAM, S.; GANESAN, M.; NAMACHIVAYAM, R. K.; KOTECHA, K.; HERENCSÁR, N.

Vydáno

29.11.2024

Nakladatel

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC

Místo

PISCATAWAY

ISSN

0098-3063

Periodikum

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

Svazek

71

Číslo

1

Stát

Spojené státy americké

Strany od

2309

Strany do

2321

Strany počet

13

URL

Plný text v Digitální knihovně

BibTex

@article{BUT193456,
  author="Bala Krishnan {Raghupathy} and Subramaniyaswamy {Vairavasundram} and Manikandan {Ganesan} and Rajesh Kumar {Namachivayam} and Ketan {Kotecha} and Norbert {Herencsár}",
  title="Enhanced Quantum Convolutional Neural Network for Signature Authentication in Consumer Products",
  journal="IEEE TRANSACTIONS ON CONSUMER ELECTRONICS",
  year="2024",
  volume="71",
  number="1",
  pages="2309--2321",
  doi="10.1109/TCE.2024.3509624",
  issn="0098-3063",
  url="https://ieeexplore.ieee.org/document/10771968"
}

Dokumenty