Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
HRANICKÝ, R.; ŠÍROVÁ, L.; RUCKÝ, V.
Originální název
Beyond the Dictionary Attack: Enhancing Password Cracking Efficiency through Machine Learning-Induced Mangling Rules
Anglický název
Druh
Článek WoS
Originální abstrakt
In the realm of digital forensics, password recovery is a critical task, with dictionary attacks remaining one of the oldest yet most effective methods. These attacks systematically test strings from pre-defined wordlists. To increase the attack power, developers of cracking tools have introduced password-mangling rules that apply additional modifications like character swapping, substitution, or capitalization. Despite several attempts to automate rule creation that have been proposed over the years, creating a suitable ruleset is still a significant challenge. The current state-of-the-art research lacks a deeper comparison and evaluation of the individual methods and their implications. In this paper, we introduce RuleForge, an ML-based mangling-rule generator that integrates four clustering techniques, 19 mangling rule commands, and configurable rule-command priorities. Our contributions include advanced optimizations, such as an extended rule command set and improved cluster-representative selection. We conduct extensive experiments on real-world datasets, evaluating clustering methods in terms of time, memory use, and hit ratios. Our approach, applied to the MDBSCAN method, achieves up to an 11.67%pt. higher hit ratio than the best yet-known state-of-the-art solution.
Anglický abstrakt
Klíčová slova
Password, Rules, John the Ripper, Hashcat, Clustering
Klíčová slova v angličtině
Autoři
Vydáno
31.03.2025
Místo
Melksham
Kniha
DFRWS EU 2025 - Selected Papers from the 12th Annual Digital Forensics Research Conference Europe
ISSN
2666-2817
Periodikum
Forensic Science International-Digital Investigation
Svazek
52
Číslo
1
Stát
Spojené státy americké
Strany od
Strany do
10
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S2666281725000046
BibTex
@article{BUT193356, author="Radek {Hranický} and Lucia {Šírová} and Viktor {Rucký}", title="Beyond the Dictionary Attack: Enhancing Password Cracking Efficiency through Machine Learning-Induced Mangling Rules", journal="Forensic Science International-Digital Investigation", year="2025", volume="52", number="1", pages="1--10", doi="10.1016/j.fsidi.2025.301865", url="https://www.sciencedirect.com/science/article/pii/S2666281725000046" }
Dokumenty
DFRWS___Beyond_the_Dictionary_AttackDFRWS___Beyond_the_Dictionary_Attack__Camera_Ready_