Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
PARÁK, R.; KŮDELA, J.; MATOUŠEK, R.; JUŘÍČEK, M.
Originální název
Deep-Reinforcement-Learning-Based Motion Planning for a Wide Range of Robotic Structures
Anglický název
Druh
Článek WoS
Originální abstrakt
The use of robot manipulators in engineering applications and scientific research has significantly increased in recent years. This can be attributed to the rise of technologies such as autonomous robotics and physics-based simulation, along with the utilization of artificial intelligence techniques. The use of these technologies may be limited due to a focus on a specific type of robotic manipulator and a particular solved task, which can hinder modularity and reproducibility in future expansions. This paper presents a method for planning motion across a wide range of robotic structures using deep reinforcement learning (DRL) algorithms to solve the problem of reaching a static or random target within a pre-defined configuration space. The paper addresses the challenge of motion planning in environments under a variety of conditions, including environments with and without the presence of collision objects. It highlights the versatility and potential for future expansion through the integration of OpenAI Gym and the PyBullet physics-based simulator.
Anglický abstrakt
Klíčová slova
deep reinforcement learning; motion planning; collision avoidance; physics-based simulation; industrial robotics
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
05.06.2024
Nakladatel
MDPI
Místo
BASEL
ISSN
2079-3197
Periodikum
Computation
Svazek
12
Číslo
6
Stát
Švýcarská konfederace
Strany od
116
Strany počet
17
URL
https://www.mdpi.com/2079-3197/12/6/116
Plný text v Digitální knihovně
http://hdl.handle.net/11012/249511
BibTex
@article{BUT189243, author="Roman {Parák} and Jakub {Kůdela} and Radomil {Matoušek} and Martin {Juříček}", title="Deep-Reinforcement-Learning-Based Motion Planning for a Wide Range of Robotic Structures", journal="Computation", year="2024", volume="12", number="6", pages="17", doi="10.3390/computation12060116", url="https://www.mdpi.com/2079-3197/12/6/116" }
Dokumenty
computation-12-00116