Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MESÁROŠOVÁ, M.; MIHÁLIK, O.; JIRGL, M.
Originální název
CNN Architecture for Posture Classification on Small Data
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
A convolutional neural network is often mentioned as one of the deep learning methods that requires a large amount of training data. Questioning this belief, this paper explores the applicability of classification based on a shallow net structure trained on a small data set in the~context of patient posture classification based on data from a pressure mattress. Designing a CNN often presents a complex problem, especially without a universally applicable approach, allowing many diverse structural possibilities and training settings. We tested various training options and layer configurations to provide an overview of influential parameters for posture classification. Experiments show encouraging results with the leave-one-out cross-validation accuracy of 93.1% of one of the evaluated CNN structures and its hyperparameter settings.
Anglický abstrakt
Klíčová slova
CNN, fine tuning, network structure, optimization, posture classification
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
14.08.2024
Nakladatel
Elsevier
Místo
Brno, Czechia
Kniha
18th IFAC Conference on Programmable Devices and Embedded Systems – PDeS 2024.
ISSN
2405-8963
Periodikum
IFAC-PapersOnLine
Svazek
58
Číslo
9
Stát
Spojené království Velké Británie a Severního Irska
Strany od
299
Strany do
304
Strany počet
6
URL
https://doi.org/10.1016/j.ifacol.2024.07.413
Plný text v Digitální knihovně
http://hdl.handle.net/11012/249472
BibTex
@inproceedings{BUT189141, author="Michaela {Hečková} and Ondrej {Mihálik} and Miroslav {Jirgl}", title="CNN Architecture for Posture Classification on Small Data", booktitle="18th IFAC Conference on Programmable Devices and Embedded Systems – PDeS 2024.", year="2024", journal="IFAC-PapersOnLine", volume="58", number="9", pages="299--304", publisher="Elsevier", address="Brno, Czechia", doi="10.1016/j.ifacol.2024.07.413", issn="2405-8971", url="https://doi.org/10.1016/j.ifacol.2024.07.413" }
Dokumenty