Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
GÁLÍK, P.; NOHEL, M.
Originální název
Implementation of a deep learning model for segmentation of multiple myeloma in CT data
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper deals with the implementation of a deep learning model for spinal tumor segmentation of multiple myeloma patients in CT data. Deep learning is becoming an important part of developing computer-aided detection and diagnosis systems. In this study, a database of 25 patients who were imaged on spectral CT and for whom different parametric images (conventional CT, virtual monoenergetic images, calcium suppression images) were reconstructed, was used. Three convolutional neural network models based on the nnU-Net framework for lytic lesion segmentation were trained on the selected data. The results were evaluated on a test database and the trained models were compared.
Anglický abstrakt
Klíčová slova
multiple myeloma, computed tomography, deep learning, nnU-Net, segmentation, monoenergetic image, calcium suppress image
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
23.04.2024
Nakladatel
Brno University of Technology, Faculty of Electrical Engineering and Communication
Místo
Brno, Czech Republic
ISBN
978-80-214-6231-1
Kniha
Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers
Edice
1
Strany od
105
Strany do
108
Strany počet
4
URL
https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf
BibTex
@inproceedings{BUT189071, author="Pavel {Gálík} and Michal {Nohel}", title="Implementation of a deep learning model for segmentation of multiple myeloma in CT data", booktitle="Proceedings I of the 30st Conference STUDENT EEICT 2024: General papers", year="2024", series="1", pages="105--108", publisher="Brno University of Technology, Faculty of Electrical Engineering and Communication", address="Brno, Czech Republic", isbn="978-80-214-6231-1", url="https://www.eeict.cz/eeict_download/archiv/sborniky/EEICT_2024_sbornik_1.pdf" }