Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
FRÝZA, T.; KUŽELA, M.; ZELENÝ, O.
Originální název
Using Computer Vision and Machine Learning for Efficient Parking Management: A Case Study
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper addresses the challenges associated with urban mobility and introduces a~low-complexity system for detecting parking lot occupancy using machine learning and computer vision techniques. Through a~field experiment at a~Czech university, images of parking areas were captured to create a~dataset titled T10Lot, and classified to get parking spot occupancy using Raspberry Pi computer. Results indicate satisfactory accuracy despite challenges such as varying lighting conditions and weather.
Anglický abstrakt
Klíčová slova
Machine learning, smart parking, edge device, classifier, IoT
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
11.06.2024
Nakladatel
Institute of Electrical and Electronics Engineers Inc.
ISBN
979-8-3503-8756-8
Kniha
Proceedings of 13th Mediterranean Conference on Embedded Computing (MECO 2024)
Strany počet
4
URL
https://ieeexplore.ieee.org/document/10577808
BibTex
@inproceedings{BUT189015, author="Tomáš {Frýza} and Miloslav {Kužela} and Ondřej {Zelený}", title="Using Computer Vision and Machine Learning for Efficient Parking Management: A Case Study", booktitle="Proceedings of 13th Mediterranean Conference on Embedded Computing (MECO 2024)", year="2024", pages="4", publisher="Institute of Electrical and Electronics Engineers Inc.", doi="10.1109/MECO62516.2024.10577808", isbn="979-8-3503-8756-8", url="https://ieeexplore.ieee.org/document/10577808" }