Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
JEŘÁBEK, K.; HYNEK, K.; RYŠAVÝ, O.
Originální název
Comparative Analysis of DNS over HTTPS Detectors
Anglický název
Druh
Článek WoS
Originální abstrakt
DNS over HTTPS (DoH) is a protocol that encrypts DNS traffic to improve user privacy and security. However, its use also poses challenges for network operators and security analysts who need to detect and monitor network traffic for security purposes. Therefore, there are multiple DoH detection proposals that leverage machine learning to identify DoH connections; however, these proposals were often tested on different datasets, and their evaluation methodologies were not consistent enough to allow direct performance comparison. In this study, seven DoH detection proposals were recreated and evaluated with six different experiments to answer research questions that targeted specific deployment scenarios concerning ML-model transferability, usability, and longevity. For thorough testing, a large Collection of DoH datasets along with a novel 5-week dataset was used, which enabled the evaluation of models’ longevity. This study provides insights into the current state of DoH detection techniques and evaluates the models in scenarios that have not been previously tested. Therefore, this paper goes beyond classical replication studies and shows previously unknown properties of seven published DoH detectors.
Anglický abstrakt
Klíčová slova
DNS over HTTPS,DoH, detection,comparative analysis,machine learning,network security
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
20.04.2024
Nakladatel
Elsevier
ISSN
1872-7069
Periodikum
Computer Networks
Svazek
247
Číslo
June
Stát
Nizozemsko
Strany od
1
Strany do
13
Strany počet
URL
https://doi.org/10.1016/j.comnet.2024.110452
Plný text v Digitální knihovně
http://hdl.handle.net/11012/252835
BibTex
@article{BUT188647, author="Kamil {Jeřábek} and Karel {Hynek} and Ondřej {Ryšavý}", title="Comparative Analysis of DNS over HTTPS Detectors", journal="Computer Networks", year="2024", volume="247", number="June", pages="1--13", doi="10.1016/j.comnet.2024.110452", issn="1389-1286", url="https://doi.org/10.1016/j.comnet.2024.110452" }
Dokumenty
1-s2.0-S1389128624002846-main