Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
VILLATORO-TELLO, E.; MADIKERI, S.; ZULUAGA-GOMEZ, J.; SHARMA, B.; SARFJOO, S.; NIGMATULINA, I.; MOTLÍČEK, P.; IVANOV, V.; GANAPATHIRAJU, A.
Originální název
Effectiveness of Text, Acoustic, and Lattice-Based Representations in Spoken Language Understanding Tasks
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
In this paper, we perform an exhaustive evaluation of different representations to address the intent classification problem in a Spoken Language Understanding (SLU) setup. We benchmark three types of systems to perform the SLU intent detection task: 1) text-based, 2) lattice-based, and a novel 3) multimodal approach. Our work provides a comprehensive analysis of what could be the achievable performance of different state-of-the-art SLU systems under different circumstances, e.g., automatically- vs. manuallygenerated transcripts. We evaluate the systems on the publicly available SLURP spoken language resource corpus. Our results indicate that using richer forms of Automatic Speech Recognition (ASR) outputs, namely word-consensus-networks, allows the SLU system to improve in comparison to the 1-best setup (5.5% relative improvement). However, crossmodal approaches, i.e., learning from acoustic and text embeddings, obtains performance similar to the oracle setup, a relative improvement of 17.8% over the 1-best configuration, being a recommended alternative to overcome the limitations of working with automatically generated transcripts.
Anglický abstrakt
Klíčová slova
Speech Recognition, Human-computer Interaction, Spoken Language Understanding, Word Consensus Networks, Cross-modal Attention
Klíčová slova v angličtině
Autoři
Rok RIV
2024
Vydáno
04.06.2023
Nakladatel
IEEE Signal Processing Society
Místo
Rhodes Island
ISBN
978-1-7281-6327-7
Kniha
ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Strany od
1
Strany do
5
Strany počet
URL
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095168
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@inproceedings{BUT187787, author="VILLATORO-TELLO, E. and MADIKERI, S. and ZULUAGA-GOMEZ, J. and SHARMA, B. and SARFJOO, S. and NIGMATULINA, I. and MOTLÍČEK, P. and IVANOV, V. and GANAPATHIRAJU, A.", title="Effectiveness of Text, Acoustic, and Lattice-Based Representations in Spoken Language Understanding Tasks", booktitle="ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings", year="2023", pages="1--5", publisher="IEEE Signal Processing Society", address="Rhodes Island", doi="10.1109/ICASSP49357.2023.10095168", isbn="978-1-7281-6327-7", url="https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10095168" }
Dokumenty
villatoro-tello_icassp2023_10095168