Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
NGUYEN, T.; RADULESCU, V.
Originální název
Multiple normalized solutions for fractional elliptic problems
Anglický název
Druh
Článek WoS
Originální abstrakt
In this article, we are first concerned with the existence of multiple normalized solutions to the following fractional p-Laplace problem:{(-Delta)(p)(s)v + V(xi(x))|v|(p-2)v = lambda|v|(p-2)v + f(v) in R-N, integral(N)(R) |v|(p )dx = a(p),where a, xi > 0, p >= 2, lambda is an element of R is an unknown parameter that appears as a Lagrange multiplier, V : R-N -> [0, infinity) is a continuous function, and f is a continuous function with L-p-subcritical growth. We prove that there exists the multiplicity of solutions by using the Lusternik-Schnirelmann category. Next, we show that the number of normalized solutions is at least the number of global minimum points of V, as xi is small enough via Ekeland's variational principle.
Anglický abstrakt
Klíčová slova
Lusternik-Schnirelmann category;normalized solutions;nonlinear Schrodinger equation;variational methods
Klíčová slova v angličtině
Autoři
Rok RIV
2025
Vydáno
02.09.2024
ISSN
0933-7741
Periodikum
FORUM MATHEMATICUM
Svazek
36
Číslo
5
Stát
Spolková republika Německo
Strany od
1225
Strany do
1248
Strany počet
24
URL
https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001
BibTex
@article{BUT187378, author="Thin Van {Nguyen} and Vicentiu {Radulescu}", title="Multiple normalized solutions for fractional elliptic problems", journal="FORUM MATHEMATICUM", year="2024", volume="36", number="5", pages="1225--1248", doi="10.1515/forum-2023-0366", issn="0933-7741", url="https://www-webofscience-com.ezproxy.lib.vutbr.cz/wos/woscc/full-record/WOS:001141871200001" }