Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠPLÍCHAL, B.; LEHKÝ, D
Originální název
Damage Identification Using Artificial Neural Network-Aided Aimed Multilevel Sampling Method
Anglický název
Druh
Článek recenzovaný mimo WoS a Scopus
Originální abstrakt
Structural health monitoring is extremely important for sustaining and preserving the service life of civil structures. Research to identify the damage can detect, locate, quantify and, where appropriate, predict potential structural damage. This paper is about damage identified by non-destructive vibrationbased experiments, which uses the difference between modal frequencies and deflection of an initial and damaged structure. The main objective of this paper is to present a hybrid method for structural damage identification combining artificial neural network and aimed multilevel sampling method. The combination of these approaches yields a more efficient damage identification in terms of time and accuracy of damage localization and damage extent determination
Anglický abstrakt
Klíčová slova
Damage identification, artificial neural network, aimed multilevel sampling, inverse analysis.
Klíčová slova v angličtině
Autoři
Rok RIV
2024
Vydáno
31.12.2023
Nakladatel
VSB-Technical University of Ostrava
Místo
Ostrava
ISSN
1804-4824
Periodikum
Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series
Svazek
23
Číslo
2
Stát
Česká republika
Strany od
61
Strany do
66
Strany počet
6
URL
http://tces.vsb.cz
BibTex
@article{BUT185580, author="Bohumil {Šplíchal} and David {Lehký}", title="Damage Identification Using Artificial Neural Network-Aided Aimed Multilevel Sampling Method", journal="Transactions of the VŠB – Technical University of Ostrava, Civil Engineering Series", year="2023", volume="23", number="2", pages="61--66", doi="10.35181/tces-2023-0017", issn="1804-4824", url="http://tces.vsb.cz" }