Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KIŠŠ, M.; HRADIŠ, M.; BENEŠ, K.; BUCHAL, P.; KULA, M.
Originální název
SoftCTC-semi-supervised learning for text recognition using soft pseudo-labels
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper explores semi-supervised training for sequence tasks, such as optical character recognition or automatic speech recognition. We propose a novel loss function-SoftCTC-which is an extension of CTC allowing to consider multiple transcription variants at the same time. This allows to omit the confidence-based filtering step which is otherwise a crucial component of pseudo-labeling approaches to semi-supervised learning. We demonstrate the effectiveness of our method on a challenging handwriting recognition task and conclude that SoftCTC matches the performance of a finely tuned filtering-based pipeline. We also evaluated SoftCTC in terms of computational efficiency, concluding that it is significantly more efficient than a nave CTC-based approach for training on multiple transcription variants, and we make our GPU implementation public.
Anglický abstrakt
Klíčová slova
CTC, SoftCTC, OCR, Text recognition, Confusion networks
Klíčová slova v angličtině
Autoři
Rok RIV
2024
Vydáno
06.10.2023
Kniha
International Journal on Document Analysis and Recognition
ISSN
1433-2825
Periodikum
Svazek
Číslo
27
Stát
Spolková republika Německo
Strany od
177
Strany do
193
Strany počet
17
URL
https://link.springer.com/article/10.1007/s10032-023-00452-9
BibTex
@article{BUT185136, author="Martin {Kišš} and Michal {Hradiš} and Karel {Beneš} and Petr {Buchal} and Michal {Kula}", title="SoftCTC-semi-supervised learning for text recognition using soft pseudo-labels", journal="International Journal on Document Analysis and Recognition", year="2023", volume="2024", number="27", pages="177--193", doi="10.1007/s10032-023-00452-9", issn="1433-2833", url="https://link.springer.com/article/10.1007/s10032-023-00452-9" }