Detail publikačního výsledku

Deeply nonlinear excitation of self-normalized short spin waves

WANG, Q.; VERBA, R.; HEINZ, B.; SCHNEIDER, M.; WOJEWODA, O.; DAVÍDKOVÁ, K.; LEVCHENKO, K.; DUBS, C.; MAUSER, N.; URBÁNEK, M.; PIRRO, P.; CHUMAK, A.

Originální název

Deeply nonlinear excitation of self-normalized short spin waves

Anglický název

Deeply nonlinear excitation of self-normalized short spin waves

Druh

Článek WoS

Originální abstrakt

Spin waves are ideal candidates for wave-based computing, but the construction of magnetic circuits is blocked by a lack of an efficient mechanism to excite long-running exchange spin waves with normalized amplitudes. Here, we solve the challenge by exploiting a deeply nonlinear phenomenon for forward volume spin waves in 200-nm-wide nanoscale waveguides and validate our concept using microfocused Brillouin light scattering spectroscopy. An unprecedented nonlinear frequency shift of more than 2 GHz is achieved, corresponding to a magnetization precession angle of 55 & DEG; and enabling the excitation of spin waves with wavelengths down to 200 nm. The amplitude of the excited spin waves is constant and independent of the input microwave power due to the self-locking nonlinear shift, enabling robust adjustment of the spin-wave amplitudes in future on-chip magnonic integrated circuits.

Anglický abstrakt

Spin waves are ideal candidates for wave-based computing, but the construction of magnetic circuits is blocked by a lack of an efficient mechanism to excite long-running exchange spin waves with normalized amplitudes. Here, we solve the challenge by exploiting a deeply nonlinear phenomenon for forward volume spin waves in 200-nm-wide nanoscale waveguides and validate our concept using microfocused Brillouin light scattering spectroscopy. An unprecedented nonlinear frequency shift of more than 2 GHz is achieved, corresponding to a magnetization precession angle of 55 & DEG; and enabling the excitation of spin waves with wavelengths down to 200 nm. The amplitude of the excited spin waves is constant and independent of the input microwave power due to the self-locking nonlinear shift, enabling robust adjustment of the spin-wave amplitudes in future on-chip magnonic integrated circuits.

Klíčová slova

spin waves; wave-based computing

Klíčová slova v angličtině

spin waves; wave-based computing

Autoři

WANG, Q.; VERBA, R.; HEINZ, B.; SCHNEIDER, M.; WOJEWODA, O.; DAVÍDKOVÁ, K.; LEVCHENKO, K.; DUBS, C.; MAUSER, N.; URBÁNEK, M.; PIRRO, P.; CHUMAK, A.

Rok RIV

2024

Vydáno

01.08.2023

Nakladatel

AMER ASSOC ADVANCEMENT SCIENCE

Místo

WASHINGTON

ISSN

2375-2548

Periodikum

Science Advances

Svazek

9

Číslo

32

Stát

Spojené státy americké

Strany počet

9

URL

Plný text v Digitální knihovně

BibTex

@article{BUT184599,
  author="Qi {Wang} and Roman {Verba} and Björn {Heinz} and Michael {Schneider} and Ondřej {Wojewoda} and Kristýna {Davídková} and Khrystyna {Levchenko} and Carsten {Dubs} and Norbert J.J. {Mauser} and Michal {Urbánek} and Phillip {Pirro} and Andrii V. {Chumak}",
  title="Deeply nonlinear excitation of self-normalized short spin waves",
  journal="Science Advances",
  year="2023",
  volume="9",
  number="32",
  pages="9",
  doi="10.1126/sciadv.adg4609",
  issn="2375-2548",
  url="https://www.science.org/doi/10.1126/sciadv.adg4609"
}

Dokumenty