Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BIOLEK, D.; BIOLKOVÁ, V.; KOLKA, Z.; BIOLEK, Z.
Originální název
Basis Functions for a Transient Analysis of Linear Commensurate Fractional-Order Systems
Anglický název
Druh
Článek WoS
Originální abstrakt
In this paper, the possibilities of expressing the natural response of a linear commensurate fractional-order system (FOS) as a linear combination of basis functions are analyzed. For all possible types of s(& alpha;)-domain poles, the corresponding basis functions are found, the kernel of which is the two-parameter Mittag-Leffler function E-& alpha;(,& beta;), & beta; = & alpha;. It is pointed out that there are mutually unambiguous correspondences between the basis functions of FOS and the known basis functions of the integer-order system (IOS) for & alpha; = 1. This correspondence can be used to algorithmically find analytical formulas for the impulse responses of FOS when the formulas for the characteristics of IOS are known. It is shown that all basis functions of FOS can be generated with Podlubny's function of type & epsilon;(k) (t, c; & alpha;, & alpha;), where c and k are the corresponding pole and its multiplicity, respectively.
Anglický abstrakt
Klíčová slova
Mittag-Leffler function; commensurate fractional-order system; basis function; impulse response
Klíčová slova v angličtině
Autoři
Rok RIV
2024
Vydáno
13.07.2023
Nakladatel
MDPI
Místo
BASEL
ISSN
1999-4893
Periodikum
Algorithms
Svazek
16
Číslo
7
Stát
Švýcarská konfederace
Strany od
1
Strany do
22
Strany počet
URL
https://www.mdpi.com/1999-4893/16/7/335
Plný text v Digitální knihovně
http://hdl.handle.net/11012/244995
BibTex
@article{BUT184376, author="Dalibor {Biolek} and Viera {Biolková} and Zdeněk {Kolka} and Zdeněk {Biolek}", title="Basis Functions for a Transient Analysis of Linear Commensurate Fractional-Order Systems", journal="Algorithms", year="2023", volume="16", number="7", pages="1--22", doi="10.3390/a16070335", url="https://www.mdpi.com/1999-4893/16/7/335" }
Dokumenty
algorithms-16-00335-v3