Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MIKLÁNEK, Š.; WRIGHT, A.; VÄLIMÄKI, V.; SCHIMMEL, J.
Originální název
Neural Grey-Box Guitar Amplifier Modelling with Limited Data
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper combines recurrent neural networks (RNNs) with the discretised Kirchhoff nodal analysis (DK-method) to create a grey-box guitar amplifier model. Both the objective and subjective results suggest that the proposed model is able to outperform a baseline black-box RNN model in the task of modelling a guitar amplifier, including realistically recreating the behaviour of the amplifier equaliser circuit, whilst requiring significantly less training data. Furthermore, we adapt the linear part of the DK-method in a deep learning scenario to derive multiple state-space filters simultaneously. We frequency sample the filter transfer functions in parallel and perform frequency domain filtering to considerably reduce the required training times compared to recursive state-space filtering. This study shows that it is a powerful idea to separately model the linear and nonlinear parts of a guitar amplifier using supervised learning.
Anglický abstrakt
Klíčová slova
guitar amplifier modelling; grey-box modelling; recurrent neural networks; virtual analogue; discretisation; state-space model
Klíčová slova v angličtině
Autoři
Rok RIV
2024
Vydáno
07.09.2023
Nakladatel
Aalborg University of Copenhagen
Místo
Kodaň
Kniha
Proceedings of the 25th International Conference on Digital Audio Effects (DAFx23)
ISSN
2413-6689
Periodikum
Proceedings of the International Conference on Digital Audio Effects (DAFx)
Stát
Rakouská republika
Strany počet
8
BibTex
@inproceedings{BUT184290, author="Štěpán {Miklánek} and Alec {Wright} and Vesa {Välimäki} and Jiří {Schimmel}", title="Neural Grey-Box Guitar Amplifier Modelling with Limited Data", booktitle="Proceedings of the 25th International Conference on Digital Audio Effects (DAFx23)", year="2023", journal="Proceedings of the International Conference on Digital Audio Effects (DAFx)", pages="8", publisher="Aalborg University of Copenhagen", address="Kodaň", issn="2413-6689" }