Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KADLEC, P.
Originální název
Multi-Objective PSO with Variable Number of Dimensions for Space Robot Path Optimization
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper aims to solve the space robot pathfinding problem, formulated as a multi-objective (MO) optimization problem with a variable number of dimensions (VND). This formulation enables the search and comparison of potential solutions with different model complexities within a single optimization run. A novel VND MO algorithm based on the well-known particle swarm optimization (PSO) algorithm is introduced and thoroughly described in this paper. The novel VNDMOPSO algorithm is validated on a set of 21 benchmark problems with different dimensionality settings and compared with two other state-of-the-art VND MO algorithms. Then, it is applied to solve five different instances of the space robot pathfinding problem formulated as a VND MO problem where two objectives are considered: (1) the minimal distance of the selected path, and (2) the minimal energy cost (expressed as the number of turning points). VNDMOPSO shows at least comparable or better convergence on the benchmark problems and significantly better convergence properties on the VND pathfinding problems compared with other VND MO algorithms.
Anglický abstrakt
Klíčová slova
space robot; pathfinding; heuristic algorithm; particle swarm optimization; variable number of dimensions; metameric optimization
Klíčová slova v angličtině
Autoři
Rok RIV
2024
Vydáno
20.06.2023
Nakladatel
MDPI
Místo
Basel, Switzerland
ISSN
1999-4893
Periodikum
Algorithms
Svazek
16
Číslo
6
Stát
Švýcarská konfederace
Strany od
1
Strany do
20
Strany počet
URL
https://www.mdpi.com/1999-4893/16/6/307/htm
Plný text v Digitální knihovně
http://hdl.handle.net/11012/213599
BibTex
@article{BUT183839, author="Petr {Kadlec}", title="Multi-Objective PSO with Variable Number of Dimensions for Space Robot Path Optimization", journal="Algorithms", year="2023", volume="16", number="6", pages="1--20", doi="10.3390/a16060307", url="https://www.mdpi.com/1999-4893/16/6/307/htm" }
Dokumenty
algorithms-16-00307-v2