Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
DIBLÍK, J.
Originální název
Exponential stability of linear discrete systems with multiple delays by degenerated Lyapunov-Krasovskii functionals
Anglický název
Druh
Článek WoS
Originální abstrakt
The problem of exponential stability of delayed discrete systems with multiple delays s n-ary sumation x(n + 1) = (I + A)x(n) + i=1 Bix(n - i), n = 0, 1, .. . is studied, where x = (x1 x2 ... xm)T is an unknown vector, m and s are fixed positive integers, A, Bi are square constant matrices and I is a unit matrix. A new degenerated Lyapunov-Krasovskii functional is used to derive sufficient conditions for exponential stability and to derive an exponential estimate of the norm of solutions. Though often used in the study of stability, the assumption that the spectral radius of the matrix of linear terms is less than 1 is not applied here. The criterion derived is illustrated by an example and compared with previously known results.
Anglický abstrakt
Klíčová slova
Exponential stability; Lyapunov-Krasovskii functional; Degenerated functional; Multiple delays; Exponential estimate; Norm
Klíčová slova v angličtině
Autoři
Rok RIV
2024
Vydáno
01.08.2023
Nakladatel
PERGAMON-ELSEVIER SCIENCE LTD
Místo
OXFORD
ISSN
1873-5452
Periodikum
Applied Mathematics Letters
Svazek
142
Číslo
108654
Stát
Spojené státy americké
Strany od
1
Strany do
6
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S0893965923000861?via%3Dihub
BibTex
@article{BUT183778, author="Josef {Diblík}", title="Exponential stability of linear discrete systems with multiple delays by degenerated Lyapunov-Krasovskii functionals", journal="Applied Mathematics Letters", year="2023", volume="142", number="108654", pages="1--6", doi="10.1016/j.aml.2023.108654", issn="0893-9659", url="https://www.sciencedirect.com/science/article/pii/S0893965923000861?via%3Dihub" }