Detail publikačního výsledku

Prediction of edge and tunnelling crack formation in layered ceramics using a stress-energy fracture criterion

PAPŠÍK, R.; ŠEVEČEK, O.; HOFER, A.; KRALEVA, I.; KREITH, J.; BERMEJO, R.

Originální název

Prediction of edge and tunnelling crack formation in layered ceramics using a stress-energy fracture criterion

Anglický název

Prediction of edge and tunnelling crack formation in layered ceramics using a stress-energy fracture criterion

Druh

Článek WoS

Originální abstrakt

A coupled stress-energy criterion is utilized to predict initiation of both edge and tunnelling cracks in layered ceramics containing thermal residual stresses. Edge (surface) cracks may originate in layers having high compressive in-plane stresses while tunnelling (internal) cracks may form in layers with high tensile in-plane stresses. This work investigates the influence of both the residual stresses magnitude and layer thickness on the formation of surface cracks and provides a design map defining safe regions where no cracks will be present in the sintered multilayer architecture upon reaching the room temperature. Necessary stress and energy inputs to evaluate the coupled criterion are calculated using the finite element method. Simulation results are validated with experimental observations on sample architectures fabricated with layers of various thicknesses and in -plane thermal residual stresses. The good agreement demonstrates the potential of the stress-energy coupled criterion for designing crack-free multi-layered ceramic architectures.

Anglický abstrakt

A coupled stress-energy criterion is utilized to predict initiation of both edge and tunnelling cracks in layered ceramics containing thermal residual stresses. Edge (surface) cracks may originate in layers having high compressive in-plane stresses while tunnelling (internal) cracks may form in layers with high tensile in-plane stresses. This work investigates the influence of both the residual stresses magnitude and layer thickness on the formation of surface cracks and provides a design map defining safe regions where no cracks will be present in the sintered multilayer architecture upon reaching the room temperature. Necessary stress and energy inputs to evaluate the coupled criterion are calculated using the finite element method. Simulation results are validated with experimental observations on sample architectures fabricated with layers of various thicknesses and in -plane thermal residual stresses. The good agreement demonstrates the potential of the stress-energy coupled criterion for designing crack-free multi-layered ceramic architectures.

Klíčová slova

Layered ceramics; Coupled criterion; Finite fracture mechanics; Residual stresses; Edge cracks; Tunnelling cracks

Klíčová slova v angličtině

Layered ceramics; Coupled criterion; Finite fracture mechanics; Residual stresses; Edge cracks; Tunnelling cracks

Autoři

PAPŠÍK, R.; ŠEVEČEK, O.; HOFER, A.; KRALEVA, I.; KREITH, J.; BERMEJO, R.

Rok RIV

2024

Vydáno

01.07.2023

Nakladatel

ELSEVIER SCI LTD

Místo

OXFORD

ISSN

0955-2219

Periodikum

Journal of the European Ceramic Society

Svazek

43

Číslo

7

Stát

Spojené království Velké Británie a Severního Irska

Strany od

2928

Strany do

2934

Strany počet

7

URL

Plný text v Digitální knihovně

BibTex

@article{BUT183390,
  author="Roman {Papšík} and Oldřich {Ševeček} and Anna-Katherina {Hofer} and Irina {Kraleva} and Josef {Kreith} and Raul {Bermejo}",
  title="Prediction of edge and tunnelling crack formation in layered ceramics using a stress-energy fracture criterion",
  journal="Journal of the European Ceramic Society",
  year="2023",
  volume="43",
  number="7",
  pages="2928--2934",
  doi="10.1016/j.jeurceramsoc.2022.12.022",
  issn="0955-2219",
  url="https://www.sciencedirect.com/science/article/pii/S0955221922009839?via%3Dihub"
}

Dokumenty