Detail publikačního výsledku

Localization versus delocalization of d-states within the Ni2MnGa Heusler alloy

JANOVEC, J.; ZELENÝ, M.; HECZKO, O.; AYUELA, A.

Originální název

Localization versus delocalization of d-states within the Ni2MnGa Heusler alloy

Anglický název

Localization versus delocalization of d-states within the Ni2MnGa Heusler alloy

Druh

Článek WoS

Originální abstrakt

We present calculations based on density-functional theory with improved exchange-correlation approaches to investigate the electronic structure of Ni2MnGa magnetic shape memory alloy prototype. We study the effects of hybrid functionals as well as a Hubbard-like correction parameter U on the structural, electronic and magnetic properties of the alloy. We show that the previously successful application of U on Mn should be extended by including U on Ni to describe the d localized electrons more accurately and in better agreement with experiments. The bonding interactions within this intermetallic alloy are analysed including the role of non-transition metal. We found that the strongest and most stabilizing bond is formed between the Ga–Ni pairs due to the delocalized s–s and p–s orbital hybridization. Our findings suggest that minimization of the over-delocalization error introduced by standard semi-local exchange-correlation functionals leads to a better description of the Ni2MnGa alloy. Furthermore we propose that the experimental total magnetic moment of Ni–Mn–Ga alloys could be increased after carefully selected heat treatment procedures.

Anglický abstrakt

We present calculations based on density-functional theory with improved exchange-correlation approaches to investigate the electronic structure of Ni2MnGa magnetic shape memory alloy prototype. We study the effects of hybrid functionals as well as a Hubbard-like correction parameter U on the structural, electronic and magnetic properties of the alloy. We show that the previously successful application of U on Mn should be extended by including U on Ni to describe the d localized electrons more accurately and in better agreement with experiments. The bonding interactions within this intermetallic alloy are analysed including the role of non-transition metal. We found that the strongest and most stabilizing bond is formed between the Ga–Ni pairs due to the delocalized s–s and p–s orbital hybridization. Our findings suggest that minimization of the over-delocalization error introduced by standard semi-local exchange-correlation functionals leads to a better description of the Ni2MnGa alloy. Furthermore we propose that the experimental total magnetic moment of Ni–Mn–Ga alloys could be increased after carefully selected heat treatment procedures.

Klíčová slova

magnetic shape memory alloys, exchange correlation energy, Ni2MnGa electron localization

Klíčová slova v angličtině

magnetic shape memory alloys, exchange correlation energy, Ni2MnGa electron localization

Autoři

JANOVEC, J.; ZELENÝ, M.; HECZKO, O.; AYUELA, A.

Rok RIV

2023

Vydáno

29.11.2022

ISSN

2045-2322

Periodikum

Scientific Reports

Svazek

12

Číslo

1

Stát

Spojené království Velké Británie a Severního Irska

Strany od

20577

Strany do

Strany počet

10

URL