Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MIKEŠ, J.; RÝPAROVÁ, L.; STEPANOV, S.; TSYGANOK, I.
Originální název
On the geometry in the large of Einstein-like manifolds
Anglický název
Druh
Článek WoS
Originální abstrakt
Gray has presented the invariant orthogonal irreducible decomposition of the space of all covariant tensors of rank 3, obeying only the identities of the gradient of the Ricci tensor. This decomposition introduced the seven classes of Einstein-like manifolds, the Ricci tensors of which fulfill the defining condition of each subspace. The large-scale geometry of such manifolds has been studied by many geometers using the classical Bochner technique. However, the scope of this method is limited to compact Riemannian manifolds. In the present paper, we prove several Liouville-type theorems for certain classes of Einstein-like complete manifolds. This represents an illustration of the new possibilities of geometric analysis.
Anglický abstrakt
Klíčová slova
Einstein-like manifold; Bochner method; Sampson Laplacian; Bourguignon Laplacian; vanishing theorem
Klíčová slova v angličtině
Autoři
Rok RIV
2023
Vydáno
24.06.2022
Nakladatel
MDPI
Místo
Basel
ISSN
2227-7390
Periodikum
Mathematics
Svazek
2208
Číslo
1
Stát
Švýcarská konfederace
Strany od
2208-01
Strany do
2208-10
Strany počet
10
URL
https://www.mdpi.com/2227-7390/10/13/2208