Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BRUMMER, J.; SWART, A.; MOŠNER, L.; SILNOVA, A.; PLCHOT, O.; STAFYLAKIS, T.; BURGET, L.
Originální název
Probabilistic Spherical Discriminant Analysis: An Alternative to PLDA for length-normalized embeddings
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
In speaker recognition, where speech segments are mapped to embeddings on the unit hypersphere, two scoring backends are commonly used, namely cosine scoring or PLDA. Both have advantages and disadvantages, depending on the context. Cosine scoring follows naturally from the spherical geometry, but for PLDA the blessing is mixedlength normalization Gaussianizes the between-speaker distribution, but violates the assumption of a speaker-independent within-speaker distribution. We propose PSDA, an analogue to PLDA that uses Von Mises- Fisher distributions on the hypersphere for both within and between-class distributions. We show how the self-conjugacy of this distribution gives closed-form likelihood-ratio scores, making it a drop-in replacement for PLDA at scoring time. All kinds of trials can be scored, including single-enroll and multienroll verification, as well as more complex likelihood-ratios that could be used in clustering and diarization. Learning is done via an EM-algorithm with closed-form updates. We explain the model and present some first experiments.
Anglický abstrakt
Klíčová slova
speaker recognition, PSDA, Von Mises-Fisher
Klíčová slova v angličtině
Autoři
Rok RIV
2023
Vydáno
18.09.2022
Nakladatel
International Speech Communication Association
Místo
Incheon
Kniha
Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
ISSN
1990-9772
Periodikum
Proceedings of Interspeech
Svazek
2022
Číslo
9
Stát
Francouzská republika
Strany od
1446
Strany do
1450
Strany počet
5
URL
https://www.isca-speech.org/archive/pdfs/interspeech_2022/brummer22_interspeech.pdf
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@inproceedings{BUT179687, author="Johan Nikolaas Langenhoven {Brummer} and Albert du Preez {Swart} and Ladislav {Mošner} and Anna {Silnova} and Oldřich {Plchot} and Themos {Stafylakis} and Lukáš {Burget}", title="Probabilistic Spherical Discriminant Analysis: An Alternative to PLDA for length-normalized embeddings", booktitle="Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH", year="2022", journal="Proceedings of Interspeech", volume="2022", number="9", pages="1446--1450", publisher="International Speech Communication Association", address="Incheon", doi="10.21437/Interspeech.2022-731", issn="1990-9772", url="https://www.isca-speech.org/archive/pdfs/interspeech_2022/brummer22_interspeech.pdf" }
Dokumenty
brummer_interspeech2022_probabilistic