Detail publikačního výsledku

SPS prepared NN-24SBT lead-free relaxor-antiferroelectric ceramics with ultrahigh energy-storage density and efficiency

Tan, H.; Yan, ZL.; Chen, SG.; Samart, C.; Takesue, N.; Salamon, D.; Liu, Y.; Zhang, HB.

Originální název

SPS prepared NN-24SBT lead-free relaxor-antiferroelectric ceramics with ultrahigh energy-storage density and efficiency

Anglický název

SPS prepared NN-24SBT lead-free relaxor-antiferroelectric ceramics with ultrahigh energy-storage density and efficiency

Druh

Článek WoS

Originální abstrakt

Dielectric ceramics are of great potential to be applied in electronic systems due to their fast discharge speed and temperature tolerance. However, the low energy storage density and efficiency highly restricts the applications of dielectric ceramics. Here, we propose a strategy of fine grain and highly densified relaxor-antiferroelectric (RE-AFE) ceramics to both increase the energy storage density and efficiency. We fabricated NaNbO3 based relaxor-antiferroelectric (RE-AFE) ceramics by Spark Plasma Sintering (SPS) and obtained an ultra-high recoverable energy storage density of 12.2 J/cm(3) and satisfied efficiency of 88%. The present research offers a route for designing dielectric ceramics with enhanced energy storage density and efficiency, which is significant to the application of dielectric ceramics. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Anglický abstrakt

Dielectric ceramics are of great potential to be applied in electronic systems due to their fast discharge speed and temperature tolerance. However, the low energy storage density and efficiency highly restricts the applications of dielectric ceramics. Here, we propose a strategy of fine grain and highly densified relaxor-antiferroelectric (RE-AFE) ceramics to both increase the energy storage density and efficiency. We fabricated NaNbO3 based relaxor-antiferroelectric (RE-AFE) ceramics by Spark Plasma Sintering (SPS) and obtained an ultra-high recoverable energy storage density of 12.2 J/cm(3) and satisfied efficiency of 88%. The present research offers a route for designing dielectric ceramics with enhanced energy storage density and efficiency, which is significant to the application of dielectric ceramics. (C) 2021 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Klíčová slova

Spark Plasma Sintering; Dielectric ceramics; Energy storage; Antiferroelectric

Klíčová slova v angličtině

Spark Plasma Sintering; Dielectric ceramics; Energy storage; Antiferroelectric

Autoři

Tan, H.; Yan, ZL.; Chen, SG.; Samart, C.; Takesue, N.; Salamon, D.; Liu, Y.; Zhang, HB.

Rok RIV

2023

Vydáno

09.05.2022

Nakladatel

PERGAMON-ELSEVIER SCIENCE LTD

Místo

OXFORD

ISSN

1359-6462

Periodikum

SCRIPTA MATERIALIA

Svazek

210

Číslo

1

Stát

Spojené státy americké

Strany od

1

Strany do

3

Strany počet

3

URL

BibTex

@article{BUT179014,
  author="Tan, H. and Yan, ZL. and Chen, SG. and Samart, C. and Takesue, N. and Salamon, D. and Liu, Y. and Zhang, HB.",
  title="SPS prepared NN-24SBT lead-free relaxor-antiferroelectric ceramics with ultrahigh energy-storage density and efficiency",
  journal="SCRIPTA MATERIALIA",
  year="2022",
  volume="210",
  number="1",
  pages="1--3",
  doi="10.1016/j.scriptamat.2021.114428",
  issn="1359-6462",
  url="https://www.sciencedirect.com/science/article/pii/S1359646221007065"
}