Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KŮDELA, J.
Originální název
Commentary on: “STOA: A bio-inspired based optimization algorithm for industrial engineering problems” [EAAI, 82 (2019), 148–174] and “Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization” [EAAI, 90 (2020), no. 103541]
Anglický název
Druh
Článek WoS
Originální abstrakt
This commentary concerns two recently developed metaheuristic algorithms, namely the Sooty Tern Optimization Algorithm, and the Tunicate Swarm Algorithm. Both of these algorithms claim computational superiority over other methods based on experimental results on a certain benchmark set. The aim of this note is to aware researchers that this claim is not valid: the proposed algorithms use a zero-bias operator and many of the studied benchmark functions on which they were found superior have optimal solutions located in the zero vector. Moreover, the codes for the methods provided by the authors are not achieving the results reported in the respective publications.
Anglický abstrakt
Klíčová slova
Sooty Tern Optimization; Tunicate Swarm Algorithm; Metaheuristic optimization; Benchmarking
Klíčová slova v angličtině
Autoři
Rok RIV
2023
Vydáno
18.05.2022
Nakladatel
Elsevier
ISSN
0952-1976
Periodikum
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE
Svazek
113
Číslo
1
Stát
Spojené království Velké Británie a Severního Irska
Strany od
Strany do
3
Strany počet
URL
https://www.sciencedirect.com/science/article/pii/S095219762200149X
BibTex
@article{BUT178347, author="Jakub {Kůdela}", title="Commentary on: “STOA: A bio-inspired based optimization algorithm for industrial engineering problems” [EAAI, 82 (2019), 148–174] and “Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization” [EAAI, 90 (2020), no. 103541]", journal="ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE", year="2022", volume="113", number="1", pages="1--3", doi="10.1016/j.engappai.2022.104930", issn="0952-1976", url="https://www.sciencedirect.com/science/article/pii/S095219762200149X" }