Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KŮDELA, J.; NEVORAL, T.; HOLOUBEK, T.
Originální název
Comparing the Brain Storm Optimization Algorithm on the Ambiguous Benchmark Set
Anglický název
Druh
Kapitola, resp. kapitoly v odborné knize
Originální abstrakt
In the field of evolutionary computation, benchmarking has a pivotal place in both the development of novel algorithms, and in performing comparisons between existing techniques. In this paper, the computational comparison of the Brain Storm Optimization (BSO) algorithm (a swarm intelligence paradigm inspired by the behaviors of the human process of brainstorming) was performed. A selected representative of the BSO algorithms (namely, BSO20) was compared with other selected methods, which were a mix of canonical methods (both swarm intelligence and evolutionary algorithms) and state-of-the-art techniques. As a test bed, the ambiguous benchmark set was employed. The results showed that even though BSO is not among the best algorithms on this test bed, it is still a well performing method comparable to some state-of-the-art algorithms.
Anglický abstrakt
Klíčová slova
Brain Storm Optimization; Ambiguous benchmark set; Benchmarking; Numerical optimization; Single objective problems
Klíčová slova v angličtině
Autoři
Rok RIV
2022
Vydáno
26.06.2022
Nakladatel
Springer, Cham
ISBN
978-3-031-09726-3
Kniha
Advances in Swarm Intelligence. ICSI 2022, Part II. Lecture Notes in Computer Science, vol 13344.
Strany od
367
Strany do
379
Strany počet
13
URL
https://link.springer.com/chapter/10.1007/978-3-031-09677-8_31
BibTex
@inbook{BUT178338, author="Jakub {Kůdela} and Tomáš {Nevoral} and Tomáš {Holoubek}", title="Comparing the Brain Storm Optimization Algorithm on the Ambiguous Benchmark Set", booktitle="Advances in Swarm Intelligence. ICSI 2022, Part II. Lecture Notes in Computer Science, vol 13344.", year="2022", publisher="Springer, Cham", pages="367--379", doi="10.1007/978-3-031-09677-8\{_}31", isbn="978-3-031-09726-3", url="https://link.springer.com/chapter/10.1007/978-3-031-09677-8_31" }