Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MIN, S.; FAJČÍK, M.; DOČEKAL, M.; ONDŘEJ, K.; SMRŽ, P.
Originální název
NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
We review the EfficientQA competition from NeurIPS 2020. The competition focused on open-domain question answering (QA), where systems take natural language questions as input and return natural language answers. The aim of the competition was to build systems that can predict correct answers while also satisfying strict on-disk memory budgets. These memory budgets were designed to encourage contestants to explore the trade-off between storing retrieval corpora or the parameters of learned models. In this report, we describe the motivation and organization of the competition, review the best submissions, and analyze system predictions to inform a discussion of evaluation for open-domain QA.
Anglický abstrakt
Klíčová slova
question answering, QA, ODQA, efficientQA, memory, disk memory, budget, efficient parameter, retrieval corpora
Klíčová slova v angličtině
Autoři
Rok RIV
2022
Vydáno
01.08.2021
Nakladatel
Proceedings of Machine Learning Research
Místo
online
Kniha
Proceedings of the NeurIPS 2020 Competition and Demonstration Track
Edice
ISSN
2640-3498
Periodikum
Svazek
133
Číslo
Stát
Spojené státy americké
Strany od
86
Strany do
111
Strany počet
25
URL
http://proceedings.mlr.press/v133/min21a/min21a.pdf
BibTex
@inproceedings{BUT175821, author="MIN, S. and FAJČÍK, M. and DOČEKAL, M. and ONDŘEJ, K. and SMRŽ, P.", title="NeurIPS 2020 EfficientQA Competition: Systems, Analyses and Lessons Learned", booktitle="Proceedings of the NeurIPS 2020 Competition and Demonstration Track", year="2021", series="Proceedings of Machine Learning Research", journal="Proceedings of Machine Learning Research", volume="133", number="133", pages="86--111", publisher="Proceedings of Machine Learning Research", address="online", url="http://proceedings.mlr.press/v133/min21a/min21a.pdf" }