Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
VYDANA, H.; KARAFIÁT, M.; ŽMOLÍKOVÁ, K.; BURGET, L.; ČERNOCKÝ, J.
Originální název
Jointly Trained Transformers Models for Spoken Language Translation
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
End-to-End and cascade (ASR-MT) spoken language translation(SLT) systems are reaching comparable performances, however,a large degradation is observed when translating the ASR hypothesisin comparison to using oracle input text. In this work, degradationin performance is reduced by creating an End-to-End differentiablepipeline between the ASR and MT systems. In this work, we trainSLT systems with ASR objective as an auxiliary loss and both thenetworks are connected through the neural hidden representations.This training has an End-to-End differentiable path with respectto the final objective function and utilizes the ASR objective forbetter optimization. This architecture has improved the BLEU scorefrom 41.21 to 44.69. Ensembling the proposed architecture withindependently trained ASR and MT systems further improved theBLEU score from 44.69 to 46.9. All the experiments are reported onEnglish-Portuguese speech translation task using the How2 corpus.The final BLEU score is on-par with the best speech translationsystem on How2 dataset without using any additional training dataand language model and using fewer parameters.
Anglický abstrakt
Klíčová slova
Spoken Language Translation, Transformers, Jointtraining, How2 dataset, Auxiliary loss, ASR objective, Coupled decoding, End-to-End differentiable pipeline.
Klíčová slova v angličtině
Autoři
Rok RIV
2022
Vydáno
06.06.2021
Nakladatel
IEEE Signal Processing Society
Místo
Toronto, Ontario
ISBN
978-1-7281-7605-5
Kniha
ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
Strany od
7513
Strany do
7517
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/12522/
BibTex
@inproceedings{BUT175791, author="Hari Krishna {Vydana} and Martin {Karafiát} and Kateřina {Žmolíková} and Lukáš {Burget} and Jan {Černocký}", title="Jointly Trained Transformers Models for Spoken Language Translation", booktitle="ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)", year="2021", pages="7513--7517", publisher="IEEE Signal Processing Society", address="Toronto, Ontario", doi="10.1109/ICASSP39728.2021.9414159", isbn="978-1-7281-7605-5", url="https://www.fit.vut.cz/research/publication/12522/" }
Dokumenty
vydana_icassp2021_09414159