Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠEBESTOVÁ, M.; DOSTÁL, P.
Originální název
The choice of the type of image for graphical processing of input data for corporate bankruptcy prediction using CNN
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This paper deals with the application of Convolutional Neural Networks (CNN) for the bankruptcy prediction of firms in the Czech Republic. It proposes several variants based on the GoogLeNet architecture that predict the bankruptcy of a company 1 to 3 years in advance. The inputs of the model are financial ratios whose values are converted into several types of images. The various types of images are searched to improve the accuracy of company bankruptcy prediction and the right type of image is found. CNN networks can effectively distinguish between active and bankrupt enterprises. The predictive accuracy of the best proposed model ranges between 85 and 93% (depending on the number of years before bankruptcy).
Anglický abstrakt
Klíčová slova
bankruptcy prediction, convolutional neural network, financial indicators
Klíčová slova v angličtině
Autoři
Rok RIV
2022
Vydáno
07.09.2021
Nakladatel
VSB - Technical University of Ostrava
Místo
Ostrava
ISBN
978-80-248-4548-7
Kniha
Financial Management of Firms and Financial Institutions
Strany od
164
Strany do
172
Strany počet
9
BibTex
@inproceedings{BUT172817, author="Monika {Šebestová} and Petr {Dostál}", title="The choice of the type of image for graphical processing of input data for corporate bankruptcy prediction using CNN", booktitle="Financial Management of Firms and Financial Institutions", year="2021", pages="164--172", publisher="VSB - Technical University of Ostrava", address="Ostrava", isbn="978-80-248-4548-7" }