Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail aplikovaného výsledku
DIEZ SÁNCHEZ, M.; LANDINI, F.; BURGET, L.
Originální název
Bayesian HMM based x-vector clustering - VBx
Anglický název
Druh
Software
Abstrakt
Diarization is the task of determining the number of speakers and "who speaks when" in a recording. It is part of speech data mining. The proposed software contains a full implementation of a Bayesian approach to do speaker diarization using low-dimensional neural representation of speakers (x-vectors) in individual segments. It follows the Brno University of Technology recipe for the Second DIHARD Diarization Challenge Track 1, where BUT was the winner.It consists of computing filter-bank features, computing x-vectors, performing Agglomerative Hierarchical Clustering on x-vectors as a first step to produce an initialization, applying Variational Bayes HMM over x-vectors to produce the diarization output, and scoring the diarization output. The software is written in Python and released as open-source under Apache License.
Abstrakt aglicky
Klíčová slova
Speaker Diarization, Variational Bayes, HMM, x-vector, DIHARD
Klíčová slova anglicky
Umístění
https://github.com/BUTSpeechFIT/VBx
Licenční poplatek
Využití výsledku jiným subjektem je možné bez nabytí licence (výsledek není licencován)
www
Dokumenty
VBx_SWVBx SWdiez_IEEE_ACM_2019_08910412landini_icassp2020_09054251diez_icassp2020_09053982