Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
PIŇOS, M.; MRÁZEK, V.; SEKANINA, L.
Originální název
Evolutionary Neural Architecture Search Supporting Approximate Multipliers
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
There is a growing interest in automated neural architecture search (NAS) methods. They are employed to routinely deliver high-quality neural network architectures for various challenging data sets and reduce the designer's effort. The NAS methods utilizing multi-objective evolutionary algorithms are especially useful when the objective is not only to minimize the network error but also to minimize the number of parameters (weights) or power consumption of the inference phase. We propose a multi-objective NAS method based on Cartesian genetic programming for evolving convolutional neural networks (CNN). The method allows approximate operations to be used in CNNs to reduce the power consumption of a target hardware implementation. During the NAS process, a suitable CNN architecture is evolved together with approximate multipliers to deliver the best trade-offs between the accuracy, network size, and power consumption. The most suitable approximate multipliers are automatically selected from a library of approximate multipliers. Evolved CNNs are compared with common human-created CNNs of a similar complexity on the CIFAR-10 benchmark problem.
Anglický abstrakt
Klíčová slova
Approximate computing, Convolutional neural network, Cartesian genetic programming, Neuroevolution, Energy efficiency
Klíčová slova v angličtině
Autoři
Rok RIV
2022
Vydáno
07.04.2021
Nakladatel
Springer Nature Switzerland AG
Místo
Seville
ISBN
978-3-030-72812-0
Kniha
Genetic Programming, 24th European Conference, EuroGP 2021
Edice
Lecture Notes in Computer Science, vol 12691
Svazek
12691
Strany od
82
Strany do
97
Strany počet
16
URL
https://link.springer.com/chapter/10.1007%2F978-3-030-72812-0_6
BibTex
@inproceedings{BUT168488, author="Michal {Piňos} and Vojtěch {Mrázek} and Lukáš {Sekanina}", title="Evolutionary Neural Architecture Search Supporting Approximate Multipliers", booktitle="Genetic Programming, 24th European Conference, EuroGP 2021", year="2021", series="Lecture Notes in Computer Science, vol 12691", volume="12691", pages="82--97", publisher="Springer Nature Switzerland AG", address="Seville", doi="10.1007/978-3-030-72812-0\{_}6", isbn="978-3-030-72812-0", url="https://link.springer.com/chapter/10.1007%2F978-3-030-72812-0_6" }