Detail publikačního výsledku

BUT Text-Dependent Speaker Verification System for SdSV Challenge 2020

LOZANO DÍEZ, A.; SILNOVA, A.; PULUGUNDLA, B.; ROHDIN, J.; VESELÝ, K.; BURGET, L.; PLCHOT, O.; GLEMBEK, O.; NOVOTNÝ, O.; MATĚJKA, P.

Originální název

BUT Text-Dependent Speaker Verification System for SdSV Challenge 2020

Anglický název

BUT Text-Dependent Speaker Verification System for SdSV Challenge 2020

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

In this paper, we present the winning BUT submission for thetext-dependent task of the SdSV challenge 2020. Given thelarge amount of training data available in this challenge, we exploresuccessful techniques from text-independent systems inthe text-dependent scenario. In particular, we trained x-vectorextractors on both in-domain and out-of-domain datasets andcombine them with i-vectors trained on concatenated MFCCsand bottleneck features, which have proven effective for thetext-dependent scenario. Moreover, we proposed the use ofphrase-dependent PLDA backend for scoring and its combinationwith a simple phrase recognizer, which brings up to 63%relative improvement on our development set with respect to usingstandard PLDA. Finally, we combine our different i-vectorand x-vector based systems using a simple linear logistic regressionscore level fusion, which provides 28% relative improvementon the evaluation set with respect to our best singlesystem.

Anglický abstrakt

In this paper, we present the winning BUT submission for thetext-dependent task of the SdSV challenge 2020. Given thelarge amount of training data available in this challenge, we exploresuccessful techniques from text-independent systems inthe text-dependent scenario. In particular, we trained x-vectorextractors on both in-domain and out-of-domain datasets andcombine them with i-vectors trained on concatenated MFCCsand bottleneck features, which have proven effective for thetext-dependent scenario. Moreover, we proposed the use ofphrase-dependent PLDA backend for scoring and its combinationwith a simple phrase recognizer, which brings up to 63%relative improvement on our development set with respect to usingstandard PLDA. Finally, we combine our different i-vectorand x-vector based systems using a simple linear logistic regressionscore level fusion, which provides 28% relative improvementon the evaluation set with respect to our best singlesystem.

Klíčová slova

text-dependent speaker verification, phrasedependentPLDA, phrase recognizer

Klíčová slova v angličtině

text-dependent speaker verification, phrasedependentPLDA, phrase recognizer

Autoři

LOZANO DÍEZ, A.; SILNOVA, A.; PULUGUNDLA, B.; ROHDIN, J.; VESELÝ, K.; BURGET, L.; PLCHOT, O.; GLEMBEK, O.; NOVOTNÝ, O.; MATĚJKA, P.

Rok RIV

2021

Vydáno

25.10.2020

Nakladatel

International Speech Communication Association

Místo

Shanghai

Kniha

Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH

ISSN

1990-9772

Periodikum

Proceedings of Interspeech

Svazek

2020

Číslo

10

Stát

Francouzská republika

Strany od

761

Strany do

765

Strany počet

5

URL

BibTex

@inproceedings{BUT168145,
  author="Alicia {Lozano Díez} and Anna {Silnova} and Bhargav {Pulugundla} and Johan Andréas {Rohdin} and Karel {Veselý} and Lukáš {Burget} and Oldřich {Plchot} and Ondřej {Glembek} and Ondřej {Novotný} and Pavel {Matějka}",
  title="BUT Text-Dependent Speaker Verification System for SdSV Challenge 2020",
  booktitle="Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH",
  year="2020",
  journal="Proceedings of Interspeech",
  volume="2020",
  number="10",
  pages="761--765",
  publisher="International Speech Communication Association",
  address="Shanghai",
  doi="10.21437/Interspeech.2020-2882",
  issn="1990-9772",
  url="https://www.isca-speech.org/archive/Interspeech_2020/pdfs/2882.pdf"
}

Dokumenty