Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MARŠÁLOVÁ, K.; SCHWARZ, D.; PROVAZNÍK, I.
Originální název
Classification of First-Episode Schizophrenia Using Wavelet Imaging Features
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
This work explores the design and implementation of an algorithm for the classification of magnetic resonance imaging data for computer-aided diagnosis of schizophrenia. Features for classification were first extracted using two morphometric methods: voxel-based morphometry (VBM) and deformation-based morphometry (DBM). These features were then transformed into a wavelet domain using the discrete wavelet transform with various numbers of decomposition levels. The number of features was then reduced by thresholding and subsequent selection by: Fisher's Discrimination Ratio (FDR), Bhattacharyya Distance, and Variances (Var.). A Support Vector Machine with a linear kernel was used for classification. The evaluation strategy was based on leave-one-out cross-validation.
Anglický abstrakt
Klíčová slova
Machine learning; neuroimaging; schizophrenia; support vector machines
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
01.05.2020
Nakladatel
IOS Press
Místo
Geneve
ISBN
978-1-64368-083-5
Kniha
Digital Personalized Health and Medicine
Edice
Studies in Health Technology and Informatics
Strany od
1221
Strany do
1222
Strany počet
2
URL
http://ebooks.iospress.nl/publication/54374
BibTex
@inproceedings{BUT167774, author="Kateřina {Maršálová} and Daniel {Schwarz} and Valentýna {Provazník}", title="Classification of First-Episode Schizophrenia Using Wavelet Imaging Features", booktitle="Digital Personalized Health and Medicine", year="2020", series="Studies in Health Technology and Informatics", pages="1221--1222", publisher="IOS Press", address="Geneve", doi="10.3233/SHTI200372", isbn="978-1-64368-083-5", url="http://ebooks.iospress.nl/publication/54374" }