Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
FRIDRICH, M.
Originální název
Understanding customer churn prediction research with structural topic models
Anglický název
Druh
Článek WoS
Originální abstrakt
Customer churn prediction is showing a growth in attention from both researchers and practitioners, creating a vast body of scientific works while being recognized as an indispensable tool of corporate retention activities. Thus, we aim to demonstrate the potential of structural topic models to navigate through the research articles and to identify essential themes and trends within the field of customer defection prediction. We apply a modified modeling procedure to journal articles focused on customer churn. As a result, the structural model of 38 topics is formed and examined considering topic prevalence, its changes over time, and the scientific impact (citations). We see prevailing themes tackling broad perspectives such as modeling, evaluation, and performance metrics. Furthermore, we recognize a slow decline in business & marketing aspects of churn prediction coupled with rising of more nuanced topics. At last, we discuss possible future steps in topic modeling within the domain.
Anglický abstrakt
Klíčová slova
Customer Churn Prediction, Natural Language Processing, Topic Modeling
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
14.12.2020
Nakladatel
Academy of Economic Studies in Bucharest
Místo
Bucharest, Romania
ISSN
1842-3264
Periodikum
Economic Computation and Economic Cybernetics Studies and Research
Svazek
54
Číslo
4
Stát
Rumunsko
Strany od
301
Strany do
317
Strany počet
16
URL
http://ecocyb.ase.ro/nr2020_4/19.+Martin+FRIDRICH+(T).pdf
BibTex
@article{BUT167274, author="Martin {Fridrich}", title="Understanding customer churn prediction research with structural topic models", journal="Economic Computation and Economic Cybernetics Studies and Research", year="2020", volume="54", number="4", pages="301--317", doi="10.24818/18423264/54.4.20.19", issn="0424-267X", url="http://ecocyb.ase.ro/nr2020_4/19.+Martin+FRIDRICH+(T).pdf" }