Detail publikačního výsledku

The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance

MUKHIGULASHVILI, S.; MANJIKASHVILI, M.

Originální název

The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance

Anglický název

The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance

Druh

Článek WoS

Originální abstrakt

Landesman-Lazer's type efficient sufficient conditions are established for the solvability of the two-point boundary value problem. The results obtained in the paper are optimal in the sense that if f = 0, i.e. when nonlinear equation turns to the linear equation, from our results follows the first part of Fredholm's theorem.

Anglický abstrakt

Landesman-Lazer's type efficient sufficient conditions are established for the solvability of the two-point boundary value problem. The results obtained in the paper are optimal in the sense that if f = 0, i.e. when nonlinear equation turns to the linear equation, from our results follows the first part of Fredholm's theorem.

Klíčová slova

fourth order nonlinear ordinary differential equation; resonance

Klíčová slova v angličtině

fourth order nonlinear ordinary differential equation; resonance

Autoři

MUKHIGULASHVILI, S.; MANJIKASHVILI, M.

Rok RIV

2021

Vydáno

30.09.2020

ISSN

1068-3623

Periodikum

Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences

Svazek

55

Číslo

5

Stát

Spojené státy americké

Strany od

291

Strany do

302

Strany počet

12

URL

BibTex

@article{BUT167264,
  author="Sulkhan {Mukhigulashvili} and Mariam {Manjikashvili}",
  title="The Dirichlet Problem for the Fourth Order Nonlinear Ordinary Differential Equations at Resonance",
  journal="Journal of Contemporary Mathematical Analysis-Armenian Academy of Sciences",
  year="2020",
  volume="55",
  number="5",
  pages="291--302",
  doi="10.3103/S1068362320050039",
  issn="1068-3623",
  url="https://link.springer.com/article/10.3103/S1068362320050039"
}