Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
LIEBERMAN, M.; VASEY, S.; ROSICKÝ, J.
Originální název
Sizes and filtrations in accessible categories
Anglický název
Druh
Článek WoS
Originální abstrakt
Accessible categories admit a purely category-theoretic replacement for cardinality: the internal size. Generalizing results and methods from [LRV19b], we examine set-theoretic problems related to internal sizes and prove several Lowenheim-Skolem theorems for accessible categories. For example, assuming the singular cardinal hypothesis, we show that a large accessible category has an object in all internal sizes of high-enough co-finality. We also prove that accessible categories with directed colimits have filtrations: any object of sufficiently high internal size is (the retract of) a colimit of a chain of strictly smaller objects.
Anglický abstrakt
Klíčová slova
accessible categories; internal size; cardinal arithmetic
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
20.05.2020
Nakladatel
HEBREW UNIV MAGNES PRESS
Místo
JERUSALEM
ISSN
0021-2172
Periodikum
ISRAEL JOURNAL OF MATHEMATICS
Svazek
238
Číslo
1
Stát
Stát Izrael
Strany od
243
Strany do
278
Strany počet
36
URL
https://link.springer.com/article/10.1007/s11856-020-2018-8
BibTex
@article{BUT164521, author="Michael Joseph {Lieberman} and Sebastien {Vasey} and Jiří {Rosický}", title="Sizes and filtrations in accessible categories", journal="ISRAEL JOURNAL OF MATHEMATICS", year="2020", volume="238", number="1", pages="243--278", doi="10.1007/s11856-020-2018-8", issn="0021-2172", url="https://link.springer.com/article/10.1007/s11856-020-2018-8" }