Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
LIEBERMAN, M.
Originální název
A CATEGORY-THEORETIC CHARACTERIZATION OF ALMOST MEASURABLE CARDINALS
Anglický název
Druh
Článek WoS
Originální abstrakt
Through careful analysis of an argument of [Proc. Amer. Math. Soc. 145 (2017), pp. 1317-1327], we show that the powerful image of any accessible functor is closed under colimits of kappa-chains, kappa a sufficiently large almost measurable cardinal. This condition on powerful images, by methods resembling those of [J. Symb. Log. 81 (2016), pp. 151-165], implies kappa-locality of Galois-types. As this, in turn, implies sufficient measurability of kappa, via [Proc. Amer. Math. Soc. 145 (2017), pp. 4517-4532], we obtain an equivalence: a purely category-theoretic characterization of almost measurable cardinals.
Anglický abstrakt
Klíčová slova
Almost measurable cardinals, accessible categories, abstract elementary classes, Galois types, locality
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
01.06.2020
Nakladatel
American Mathematical Society
Místo
Providence, Rhode Island, USA
ISSN
1088-6826
Periodikum
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY
Svazek
148
Číslo
9
Stát
Spojené státy americké
Strany od
4065
Strany do
4077
Strany počet
13
URL
https://www.ams.org/journals/proc/2020-148-09/S0002-9939-2020-15076-9/
BibTex
@article{BUT164488, author="Michael Joseph {Lieberman}", title="A CATEGORY-THEORETIC CHARACTERIZATION OF ALMOST MEASURABLE CARDINALS", journal="PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY", year="2020", volume="148", number="9", pages="4065--4077", doi="10.1090/proc/15076", issn="0002-9939", url="https://www.ams.org/journals/proc/2020-148-09/S0002-9939-2020-15076-9/" }