Detail publikačního výsledku

A novel multiscale approach to brittle fracture of nano/micro-sized components

KOTOUL, M.; SKALKA, P.; PROFANT, T.; ŘEHÁK, P.; ŠESTÁK, P.; ČERNÝ, M.; POKLUDA, J.

Originální název

A novel multiscale approach to brittle fracture of nano/micro-sized components

Anglický název

A novel multiscale approach to brittle fracture of nano/micro-sized components

Druh

Článek WoS

Originální abstrakt

Principles and advantages of a new concept based on the ab initio aided strain gradient elasticity theory are shown in comparison with the classical Barenblatt cohesive model. The method is applied to the theoretical prediction of the critical energy release rate and the crack tip opening displacement at the crack instability in nanopanels made of germanium and molybdenum crystals. The necessary length scale parameter l1 is determined for germanium and molybdenum by the best gradient elasticity fits of ab initio computed screw dislocation displacements and phonon dispersions. Values of ab initio computed critical energy release rates and crack opening profiles revealed that the length l1 is related to inflexion points of profiles. A novel ab initio method in combination with continuum mechanics was successfully tested to replace molecular statics dependent of availability of interatomic potentials. The asymptotic strain gradient elasticity solution for displacement components near the crack tip in materials with cubic lattice was also derived.

Anglický abstrakt

Principles and advantages of a new concept based on the ab initio aided strain gradient elasticity theory are shown in comparison with the classical Barenblatt cohesive model. The method is applied to the theoretical prediction of the critical energy release rate and the crack tip opening displacement at the crack instability in nanopanels made of germanium and molybdenum crystals. The necessary length scale parameter l1 is determined for germanium and molybdenum by the best gradient elasticity fits of ab initio computed screw dislocation displacements and phonon dispersions. Values of ab initio computed critical energy release rates and crack opening profiles revealed that the length l1 is related to inflexion points of profiles. A novel ab initio method in combination with continuum mechanics was successfully tested to replace molecular statics dependent of availability of interatomic potentials. The asymptotic strain gradient elasticity solution for displacement components near the crack tip in materials with cubic lattice was also derived.

Klíčová slova

DFT; FEM; fracture nanomechanics; size-dependent phenomena; strain gradient elasticity

Klíčová slova v angličtině

DFT; FEM; fracture nanomechanics; size-dependent phenomena; strain gradient elasticity

Autoři

KOTOUL, M.; SKALKA, P.; PROFANT, T.; ŘEHÁK, P.; ŠESTÁK, P.; ČERNÝ, M.; POKLUDA, J.

Rok RIV

2020

Vydáno

29.08.2020

ISSN

8756-758X

Periodikum

FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES

Svazek

43

Číslo

8

Stát

Spojené království Velké Británie a Severního Irska

Strany od

1630

Strany do

1645

Strany počet

16

URL

BibTex

@article{BUT160769,
  author="Michal {Kotoul} and Petr {Skalka} and Tomáš {Profant} and Petr {Řehák} and Petr {Šesták} and Miroslav {Černý} and Jaroslav {Pokluda}",
  title="A novel multiscale approach to brittle fracture of nano/micro-sized components",
  journal="FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES",
  year="2020",
  volume="43",
  number="8",
  pages="1630--1645",
  doi="10.1111/ffe.13179",
  issn="8756-758X",
  url="https://onlinelibrary.wiley.com/doi/full/10.1111/ffe.13179"
}