Detail publikačního výsledku

Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery

ONDEL YANG, L.; VYDANA, H.; BURGET, L.; ČERNOCKÝ, J.

Originální název

Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery

Anglický název

Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

This work tackles the problem of learning a set of language specificacoustic units from unlabeled speech recordings given aset of labeled recordings from other languages. Our approachmay be described by the following two steps procedure: firstthe model learns the notion of acoustic units from the labelleddata and then the model uses its knowledge to find new acousticunits on the target language. We implement this processwith the Bayesian Subspace Hidden Markov Model (SHMM), amodel akin to the Subspace Gaussian Mixture Model (SGMM)where each low dimensional embedding represents an acousticunit rather than just a HMMs state. The subspace is trainedon 3 languages from the GlobalPhone corpus (German, Polishand Spanish) and the AUs are discovered on the TIMIT corpus.Results, measured in equivalent Phone Error Rate, show thatthis approach significantly outperforms previous HMM basedacoustic units discovery systems and compares favorably withthe Variational Auto Encoder-HMM.

Anglický abstrakt

This work tackles the problem of learning a set of language specificacoustic units from unlabeled speech recordings given aset of labeled recordings from other languages. Our approachmay be described by the following two steps procedure: firstthe model learns the notion of acoustic units from the labelleddata and then the model uses its knowledge to find new acousticunits on the target language. We implement this processwith the Bayesian Subspace Hidden Markov Model (SHMM), amodel akin to the Subspace Gaussian Mixture Model (SGMM)where each low dimensional embedding represents an acousticunit rather than just a HMMs state. The subspace is trainedon 3 languages from the GlobalPhone corpus (German, Polishand Spanish) and the AUs are discovered on the TIMIT corpus.Results, measured in equivalent Phone Error Rate, show thatthis approach significantly outperforms previous HMM basedacoustic units discovery systems and compares favorably withthe Variational Auto Encoder-HMM.

Klíčová slova

Bayesian Inference, Hidden Markov Model,Subspace Model, Variational Bayes, Low-resource languages,Acoustic Unit Discovery

Klíčová slova v angličtině

Bayesian Inference, Hidden Markov Model,Subspace Model, Variational Bayes, Low-resource languages,Acoustic Unit Discovery

Autoři

ONDEL YANG, L.; VYDANA, H.; BURGET, L.; ČERNOCKÝ, J.

Rok RIV

2020

Vydáno

15.09.2019

Nakladatel

International Speech Communication Association

Místo

Graz

Kniha

Proceedings of Interspeech 2019

ISSN

1990-9772

Periodikum

Proceedings of Interspeech

Svazek

2019

Číslo

9

Stát

Francouzská republika

Strany od

261

Strany do

265

Strany počet

5

URL

BibTex

@inproceedings{BUT159991,
  author="Lucas Antoine Francois {Ondel} and Hari Krishna {Vydana} and Lukáš {Burget} and Jan {Černocký}",
  title="Bayesian Subspace Hidden Markov Model for Acoustic Unit Discovery",
  booktitle="Proceedings of Interspeech 2019",
  year="2019",
  journal="Proceedings of Interspeech",
  volume="2019",
  number="9",
  pages="261--265",
  publisher="International Speech Communication Association",
  address="Graz",
  doi="10.21437/Interspeech.2019-2224",
  issn="1990-9772",
  url="https://www.isca-speech.org/archive/Interspeech_2019/pdfs/2224.pdf"
}

Dokumenty