Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ZUTH, D.; MARADA, T.
Originální název
Using artificial intelligence to determine the type of rotary machine fault
Anglický název
Druh
Článek Scopus
Originální abstrakt
The article deals with the possibility of using machine learning in vibrodiagnostics to determine the type of fault of rotating machine. The data source is real measured data from the vibrodiagnostic model. This model allows simulation of some types of faults. The data is then processed and reduced for the use of the Matlab Classification learner app, which creates a model for recognizing faults. The model is ultimately tested on new samples of data. The aim of the article is to verify the ability to recognize similarly rotary machine faults from real measurements in the time domain.
Anglický abstrakt
Klíčová slova
Classification learner, Classification method, Dynamic unbalance, Industry 4.0, Machine learning, Matlab, Neuron network, Static unbalance, Vibrodiagnostics
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
21.12.2018
Nakladatel
Brno University of Technology
Místo
Brno, Czech Republic
ISSN
1803-3814
Periodikum
Mendel Journal series
Svazek
24
Číslo
2
Stát
Česká republika
Strany od
49
Strany do
54
Strany počet
6
URL
https://mendel-journal.org/index.php/mendel/article/view/10
BibTex
@article{BUT159887, author="Daniel {Zuth} and Tomáš {Marada}", title="Using artificial intelligence to determine the type of rotary machine fault", journal="Mendel Journal series", year="2018", volume="24", number="2", pages="49--54", doi="10.13164/2018.2.049", issn="1803-3814", url="https://mendel-journal.org/index.php/mendel/article/view/10" }