Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
POKOROVÁ, K., HOROVÁ, I.
Originální název
Maximum likelihood method for bandwidth selection in kernel conditional density estimate
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper discusses the kernel estimator of conditional density. A significant problem of kernel smoothing is bandwidth selection. The problem consists in the fact that optimal bandwidth depends on the unknown conditional and marginal density. This is the reason why some data-driven method needs to be applied. In this paper, we suggest a method for bandwidth selection based on a classical maximum likelihood approach. We consider a slight modification of the original method—the maximum likelihood method with one observation being left out. Applied to two types of conditional density estimators—to the Nadaraya–Watson and local linear estimator, the proposed method is compared with other known methods in a simulation study. Our aim is to compare the methods from different points of view, concentrating on the accuracy of the estimated bandwidths, on the final model quality measure, and on the computational time.
Anglický abstrakt
Klíčová slova
kernel smoothing; conditional density; methods for bandwidth selection; leave-one-out maximum likelihood method
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
02.11.2019
Nakladatel
Springer Verlag
Místo
Berlin
ISSN
0943-4062
Periodikum
COMPUTATIONAL STATISTICS
Svazek
34
Číslo
4
Stát
Spolková republika Německo
Strany od
1871
Strany do
1887
Strany počet
16
URL
https://link.springer.com/article/10.1007/s00180-019-00884-0
BibTex
@article{BUT159825, author="Kateřina {Pokorová} and Ivanka {Horová}", title="Maximum likelihood method for bandwidth selection in kernel conditional density estimate", journal="COMPUTATIONAL STATISTICS", year="2019", volume="34", number="4", pages="1871--1887", doi="10.1007/s00180-019-00884-0", issn="0943-4062", url="https://link.springer.com/article/10.1007/s00180-019-00884-0" }