Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
MUKHIGULASHVILI, S.; NOVOTNÁ, V.
Originální název
The periodic problem for the second order integro-differential equations with distributed deviation
Anglický název
Druh
Článek WoS
Originální abstrakt
In the paper we describe the classes of unique solvability of the Dirichlet and mixed two point boundary value problems for the second order linear integro-differential equation ∫b u′′ (t) = p0 (t)u(t) + p1 (t)u(τ1 (t)) + p(t, s)u(τ (s)) ds + q(t). a On the basis of the obtained and, in some sense, optimal results for the linear problems, by the a priori boundedness principle we prove the theorems of solvability and unique solvability for the second order nonlinear functional differential equations under the mentioned boundary conditions.
Anglický abstrakt
Klíčová slova
Integro-differential equations; Dirichlet and mixed problems; unique solvability; a priori boundedness principle
Klíčová slova v angličtině
Autoři
Rok RIV
2021
Vydáno
05.06.2021
Nakladatel
Institute of Mathematics CAS
ISSN
0862-7959
Periodikum
Mathematica Bohemica
Svazek
146
Číslo
2
Stát
Česká republika
Strany od
167
Strany do
183
Strany počet
10
URL
https://articles.math.cas.cz/10.21136/MB.2020.0061-19
Plný text v Digitální knihovně
http://hdl.handle.net/11012/193386
BibTex
@article{BUT159528, author="Sulkhan {Mukhigulashvili} and Veronika {Novotná}", title="The periodic problem for the second order integro-differential equations with distributed deviation", journal="Mathematica Bohemica", year="2021", volume="146", number="2", pages="167--183", doi="10.21136/MB.2020.0061-19", issn="0862-7959", url="https://articles.math.cas.cz/10.21136/MB.2020.0061-19" }
Dokumenty
MB.2020.0061-19