Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
RAJMIC, P.; ZÁVIŠKA, P.; VESELÝ, V.; MOKRÝ, O.
Originální název
A new generalized projection and its application to acceleration of audio declipping
Anglický název
Druh
Článek WoS
Originální abstrakt
In convex optimization, it is often inevitable to work with projectors onto convex sets composed with a linear operator. Such a need arises from both the theory and applications, with signal processing being a prominent and broad field where convex optimization has been used recently. In this article, a novel projector is presented, which generalizes previous results in that it admits to work with a broader family of linear transforms when compared with the state of the art but, on the other hand, it is limited to box-type convex sets in the transformed domain. The new projector is described by an explicit formula, which makes it simple to implement and requires a low computational cost. The projector is interpreted within the framework of the so-called proximal splitting theory. The convenience of the new projector is demonstrated on an example from signal processing, where it was possible to speed up the convergence of a signal declipping algorithm by a factor of more than two.
Anglický abstrakt
Klíčová slova
projection; optimization; generalization; box constraints; declipping; desaturation; proximal splitting; sparsity
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
19.09.2019
Nakladatel
MDPI
Místo
Basel
ISSN
2075-1680
Periodikum
Axioms
Svazek
8
Číslo
3
Stát
Švýcarská konfederace
Strany od
1
Strany do
20
Strany počet
URL
https://www.mdpi.com/2075-1680/8/3/105
Plný text v Digitální knihovně
http://hdl.handle.net/11012/180691
BibTex
@article{BUT158565, author="Pavel {Rajmic} and Pavel {Záviška} and Vítězslav {Veselý} and Ondřej {Mokrý}", title="A new generalized projection and its application to acceleration of audio declipping", journal="Axioms", year="2019", volume="8", number="3", pages="1--20", doi="10.3390/axioms8030105", issn="2075-1680", url="https://www.mdpi.com/2075-1680/8/3/105" }
Dokumenty
axioms-08-00105