Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
PETRŽELA, J.; ŠOTNER, R.
Originální název
New nonlinear active element dedicated to modeling chaotic dynamics with complex polynomial vector fields
Anglický název
Druh
Článek WoS
Originální abstrakt
This paper describes evolution of new active element that is able to significantly simplify the design process of lumped chaotic oscillator, especially if the concept of analog computer or state space description is adopted. The major advantage of the proposed active device lies in the incorporation of two fundamental mathematical operations into a single five-port voltage-input current-output element: namely, differentiation and multiplication. The developed active device is verified inside three different synthesis scenarios: circuitry realization of a third-order cyclically symmetrical vector field, hyperchaotic system based on the Lorenz equations and fourth- and fifth-order hyperjerk function. Mentioned cases represent complicated vector fields that cannot be implemented without the necessity of utilizing many active elements. The captured oscilloscope screenshots are compared with numerically integrated trajectories to demonstrate good agreement between theory and measurement.
Anglický abstrakt
Klíčová slova
bifurcation diagram; chaotic oscillator; Lyapunov exponents; polynomial vector field; squarer; trans-conductance mode
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
06.09.2019
Nakladatel
MDPI
Místo
Basel, Switzerland
ISSN
1099-4300
Periodikum
Entropy
Svazek
21
Číslo
9
Stát
Švýcarská konfederace
Strany od
1
Strany do
37
Strany počet
URL
https://www.mdpi.com/1099-4300/21/9/871
Plný text v Digitální knihovně
http://hdl.handle.net/11012/180645
BibTex
@article{BUT158448, author="Jiří {Petržela} and Roman {Šotner}", title="New nonlinear active element dedicated to modeling chaotic dynamics with complex polynomial vector fields", journal="Entropy", year="2019", volume="21", number="9", pages="1--37", doi="10.3390/e21090871", url="https://www.mdpi.com/1099-4300/21/9/871" }
Dokumenty
entropy-21-00871