Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
NOVOTNÝ, O.; PLCHOT, O.; GLEMBEK, O.; ČERNOCKÝ, J.; BURGET, L.
Originální název
Analysis of DNN Speech Signal Enhancement for Robust Speaker Recognition
Anglický název
Druh
Článek WoS
Originální abstrakt
In this work, we present an analysis of a DNN-based autoencoder for speech enhancement, dereverberation and denoising. Thetarget application is a robust speaker verification (SV) system. We start our approach by carefully designing a data augmentationprocess to cover a wide range of acoustic conditions and to obtain rich training data for various components of our SV system.We augment several well-known databases used in SV with artificially noised and reverberated data and we use them to train adenoising autoencoder (mapping noisy and reverberated speech to its clean version) as well as an x-vector extractor which is cur-rently considered as state-of-the-art in SV. Later, we use the autoencoder as a preprocessing step for a text-independent SV sys-tem. We compare results achieved with autoencoder enhancement, multi-condition PLDA training and their simultaneous use.We present a detailed analysis with various conditions of NIST SRE 2010, 2016, PRISM and with re-transmitted data. We con-clude that the proposed preprocessing can significantly improve both i-vector and x-vector baselines and that this technique canbe used to build a robust SV system for various target domains.
Anglický abstrakt
Klíčová slova
Speakerverification; Signalenhancement; Autoencoder; Neuralnetwork; Robustness; Embedding
Klíčová slova v angličtině
Autoři
Rok RIV
2020
Vydáno
09.06.2019
ISSN
0885-2308
Periodikum
COMPUTER SPEECH AND LANGUAGE
Svazek
2019
Číslo
58
Stát
Spojené království Velké Británie a Severního Irska
Strany od
403
Strany do
421
Strany počet
19
URL
https://www.sciencedirect.com/science/article/pii/S0885230818303607
BibTex
@article{BUT158089, author="Ondřej {Novotný} and Oldřich {Plchot} and Ondřej {Glembek} and Jan {Černocký} and Lukáš {Burget}", title="Analysis of DNN Speech Signal Enhancement for Robust Speaker Recognition", journal="COMPUTER SPEECH AND LANGUAGE", year="2019", volume="2019", number="58", pages="403--421", doi="10.1016/j.csl.2019.06.004", issn="0885-2308", url="https://www.sciencedirect.com/science/article/pii/S0885230818303607" }
Dokumenty
novotny_elsevier_Journal_Paper_2019