Detail publikačního výsledku

Positive solutions of nonlinear discrete equations

BAŠTINEC, J.; DIBLÍK, J.; HALFAROVÁ, H.

Originální název

Positive solutions of nonlinear discrete equations

Anglický název

Positive solutions of nonlinear discrete equations

Druh

Stať ve sborníku v databázi WoS či Scopus

Originální abstrakt

A delayed discrete equation $\Delta x(n)=f(n,x(n),x(n-1),\dots,x(n-k))$ is considered where $n=a+k,a+k+1,\dots$ and $a\in\mathbb{N}$. It is proved that, given some conditions for $f,$ there exists a positive solution $x=x(n)$ for $n\to \infty$. The rate of convergence of a positive solution is estimated as well.

Anglický abstrakt

A delayed discrete equation $\Delta x(n)=f(n,x(n),x(n-1),\dots,x(n-k))$ is considered where $n=a+k,a+k+1,\dots$ and $a\in\mathbb{N}$. It is proved that, given some conditions for $f,$ there exists a positive solution $x=x(n)$ for $n\to \infty$. The rate of convergence of a positive solution is estimated as well.

Klíčová slova

Discrete equation, delayed equation, asymptotic decomposition, positive solution.

Klíčová slova v angličtině

Discrete equation, delayed equation, asymptotic decomposition, positive solution.

Autoři

BAŠTINEC, J.; DIBLÍK, J.; HALFAROVÁ, H.

Rok RIV

2020

Vydáno

05.02.2019

Nakladatel

Slovak University of Technology

Místo

Bratislava

ISBN

978-80-227-4884-1

Kniha

18th conference on aplied mathematics. Aplimat 2019 Proceedings.

Strany od

23

Strany do

30

Strany počet

8

BibTex

@inproceedings{BUT157460,
  author="Jaromír {Baštinec} and Josef {Diblík} and Hana {Boháčková}",
  title="Positive solutions of nonlinear discrete equations",
  booktitle="18th conference  on aplied mathematics. Aplimat 2019 Proceedings.",
  year="2019",
  number="1",
  pages="23--30",
  publisher="Slovak University of Technology",
  address="Bratislava",
  isbn="978-80-227-4884-1"
}