Detail publikačního výsledku

Chaotised polymeric hollow fiber bundle as a crossflow heat exchanger in air-water application

KROULÍKOVÁ, T.; ASTROUSKI, I.; RAUDENSKÝ, M.

Originální název

Chaotised polymeric hollow fiber bundle as a crossflow heat exchanger in air-water application

Anglický název

Chaotised polymeric hollow fiber bundle as a crossflow heat exchanger in air-water application

Druh

Abstrakt

Originální abstrakt

Polymeric hollow fibre heat exchangers are an alternative to common metal heat exchangers in low temperature applications. Their advantages are low cost, low weight and corrosion resistance. The heat transfer surface consists of hundreds or even thousands of fibres of small diameter. In order to provide direct contact of fibres with the surrounding stream of fluid there is need to separate fibres from each other to let fluid flow between. There is simple way to separate the fibres by chaotization i.e. form each fibre into its unique shape. Due to this separation technique, mutual contacts of fibres are pointwise. In this paper, six chaotized polymeric hollow fibre bundles with different number of fibres were studied. The presented bundles were different by fibre diameter, number and shape. These bundles were fixed into module in the way that the middle part serves as a crossflow heat exchanger in an air tunnel. They were tested for air-water application with three different flow rates of air. The overall heat transfer coefficients were determined, and inner and outer heat transfer coefficients were derived.

Anglický abstrakt

Polymeric hollow fibre heat exchangers are an alternative to common metal heat exchangers in low temperature applications. Their advantages are low cost, low weight and corrosion resistance. The heat transfer surface consists of hundreds or even thousands of fibres of small diameter. In order to provide direct contact of fibres with the surrounding stream of fluid there is need to separate fibres from each other to let fluid flow between. There is simple way to separate the fibres by chaotization i.e. form each fibre into its unique shape. Due to this separation technique, mutual contacts of fibres are pointwise. In this paper, six chaotized polymeric hollow fibre bundles with different number of fibres were studied. The presented bundles were different by fibre diameter, number and shape. These bundles were fixed into module in the way that the middle part serves as a crossflow heat exchanger in an air tunnel. They were tested for air-water application with three different flow rates of air. The overall heat transfer coefficients were determined, and inner and outer heat transfer coefficients were derived.

Klíčová slova

Polymer hollow fibre, chaotic structure, crossflow heat exchanger, heat transfer coefficient

Klíčová slova v angličtině

Polymer hollow fibre, chaotic structure, crossflow heat exchanger, heat transfer coefficient

Autoři

KROULÍKOVÁ, T.; ASTROUSKI, I.; RAUDENSKÝ, M.

Rok RIV

2019

Vydáno

09.04.2019

Místo

Brno

ISBN

978-80-214-5733-1

Kniha

ERIN 2019

Strany od

26

Strany do

26

Strany počet

1

Plný text v Digitální knihovně

BibTex

@misc{BUT156811,
  author="Tereza {Kroulíková} and Ilja {Astrouski} and Miroslav {Raudenský}",
  title="Chaotised polymeric hollow fiber bundle as a crossflow heat exchanger in air-water application",
  booktitle="ERIN 2019",
  year="2019",
  edition="1",
  pages="26--26",
  address="Brno",
  isbn="978-80-214-5733-1",
  note="Abstract"
}