Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
KOLAŘÍK, M.; BURGET, R.; UHER, V.; ŘÍHA, K.; DUTTA, M.
Originální název
Optimized High Resolution 3D Dense-U-Net Network for Brain and Spine Segmentation
Anglický název
Druh
Článek WoS
Originální abstrakt
The 3D image segmentation is the process of partitioning a digital 3D volumes into multiple segments. This paper presents a fully automatic method for high resolution 3D volumetric segmentation of medical image data using modern supervised deep learning approach. We introduce 3D Dense-U-Net neural network architecture implementing densely connected layers. It has been optimized for graphic process unit accelerated high resolution image processing on currently available hardware (Nvidia GTX 1080ti). The method has been evaluated on MRI brain 3D volumetric dataset and CT thoracic scan dataset for spine segmentation. In contrast with many previous methods, our approach is capable of precise segmentation of the input image data in the original resolution, without any pre-processing of the input image. It can process image data in 3D and has achieved accuracy of 99.72% on MRI brain dataset, which outperformed results achieved by human expert. On lumbar and thoracic vertebrae CT dataset it has achieved the accuracy of 99.80%. The architecture proposed in this paper can also be easily applied to any task already using U-Net network as a segmentation algorithm to enhance its results. Complete source code was released online under open-source license.
Anglický abstrakt
Klíčová slova
3D segmentation; brain; deep learning; neural network; open-source; semantic segmentation; spine; u-net
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
15.02.2019
Nakladatel
MDPI
ISSN
2076-3417
Periodikum
Applied Sciences-Basel
Svazek
9
Číslo
3
Stát
Švýcarská konfederace
Strany od
1
Strany do
17
Strany počet
URL
https://www.mdpi.com/2076-3417/9/3/404
Plný text v Digitální knihovně
http://hdl.handle.net/11012/179271
BibTex
@article{BUT155280, author="Martin {Kolařík} and Radim {Burget} and Václav {Uher} and Kamil {Říha} and Malay Kishore {Dutta}", title="Optimized High Resolution 3D Dense-U-Net Network for Brain and Spine Segmentation", journal="Applied Sciences-Basel", year="2019", volume="9", number="3", pages="1--17", doi="10.3390/app9030404", url="https://www.mdpi.com/2076-3417/9/3/404" }
Dokumenty
applsci-09-00404-v2