Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ŠPAŇHEL, J.; SOCHOR, J.; MAKAROV, A.
Originální název
Detection of Traffic Violations of Road Users Based on Convolutional Neural Networks
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
In this paper, we explore the implementationof vehicle and pedestrian detection based on neural networksin a real-world application. We suggest changes to thepreviously published method with respect to capabilities oflow-powered devices, such as Nvidia Jetson platform. Ourexperimental evaluation shows that detectors are capable ofrunning 10.7 FPS on Jetson TX2 and can be used in real-world applications.
Anglický abstrakt
Klíčová slova
camera calibration, convolutional neural networks, pedestrian detection, traffic violation, vehicle detection
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
29.10.2018
Nakladatel
IEEE Signal Processing Society
Místo
Belgrade
ISBN
978-1-5386-6974-7
Kniha
2018 14th Symposium on Neural Networks and Applications (NEUREL)
Strany od
1
Strany do
6
Strany počet
BibTex
@inproceedings{BUT155106, author="ŠPAŇHEL, J. and SOCHOR, J. and MAKAROV, A.", title="Detection of Traffic Violations of Road Users Based on Convolutional Neural Networks", booktitle="2018 14th Symposium on Neural Networks and Applications (NEUREL)", year="2018", pages="1--6", publisher="IEEE Signal Processing Society", address="Belgrade", doi="10.1109/NEUREL.2018.8586996", isbn="978-1-5386-6974-7" }