Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
HON, J.; MARUŠIAK, M.; MARTÍNEK, T.; ZENDULKA, J.; BEDNÁŘ, D.; DAMBORSKÝ, J.
Originální název
SoluProt: Prediction of Protein Solubility
Anglický název
Druh
Stať ve sborníku mimo WoS a Scopus
Originální abstrakt
Protein solubility poses a major bottleneck in productionof many therapeutic and industrially attractive proteins. Experimentalsolubilization attempts are plagued by relatively low success rates andoften lead to the loss of biological activity. Therefore, any advance incomputational prediction of protein solubility may reduce the cost of experimentalstudies significantly. Here, we propose a novel software toolSoluProt for prediction of solubility from protein sequence based on machinelearning and TargetTrack database. SoluProt achieved the bestaccuracy 58.2% and AUC 0.61 of all available tools at an independentbalanced test set derived from NESG database. While the absolute predictionperformance is rather low, SoluProt can still help to reduce costsof experimental studies significantly by efficient prioritization of proteinsequences. The main SoluProt contribution lies in improved preprocessingof noisy training data and sensible selection of sequence featuresincluded in the prediction model.
Anglický abstrakt
Klíčová slova
protein, solubility, prediction, machine-learning
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
17.08.2018
Nakladatel
Brno University of Technology
Místo
Brno
ISBN
978-80-214-5679-2
Kniha
DAZ & WIKT 2018 Proceedings
Strany od
261
Strany do
265
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/11808/
BibTex
@inproceedings{BUT155085, author="Jiří {Hon} and Martin {Marušiak} and Tomáš {Martínek} and Jaroslav {Zendulka} and David {Bednář} and Jiří {Damborský}", title="SoluProt: Prediction of Protein Solubility", booktitle="DAZ & WIKT 2018 Proceedings", year="2018", pages="261--265", publisher="Brno University of Technology", address="Brno", isbn="978-80-214-5679-2", url="https://www.fit.vut.cz/research/publication/11808/" }
Dokumenty
DAZ_S9_Jiri_Hon_v2