Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
BRUMMER, J.; SILNOVA, A.; BURGET, L.; STAFYLAKIS, T.
Originální název
Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Embeddings in machine learning are low-dimensional representationsof complex input patterns, with the property that simplegeometric operations like Euclidean distances and dot productscan be used for classification and comparison tasks. Weintroduce meta-embeddings, which live in more general innerproduct spaces and which are designed to better propagate uncertaintythrough the embedding bottleneck. Traditional embeddingsare trained to maximize between-class and minimizewithin-class distances. Meta-embeddings are trained to maximizerelevant information throughput. As a proof of conceptin speaker recognition, we derive an extractor from the familiargenerative Gaussian PLDA model (GPLDA). We show thatGPLDA likelihood ratio scores are given by Hilbert space innerproducts between Gaussian likelihood functions, which weterm Gaussian meta-embeddings (GMEs). Meta-embedding extractorscan be generatively or discriminatively trained. GMEsextracted by GPLDA have fixed precisions and do not propagateuncertainty. We show that a generalization to heavy-tailedPLDA gives GMEs with variable precisions, which do propagateuncertainty. Experiments on NIST SRE 2010 and 2016show that the proposed method applied to i-vectors withoutlength normalization is up to 20% more accurate than GPLDAapplied to length-normalized i-vectors.
Anglický abstrakt
Klíčová slova
embeddings, machine learning, speaker recognition
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
26.06.2018
Nakladatel
International Speech Communication Association
Místo
Les Sables d'Olonne
Kniha
Proceedings of Odyssey 2018
ISSN
2312-2846
Periodikum
Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland
Svazek
2018
Číslo
6
Stát
Finská republika
Strany od
349
Strany do
356
Strany počet
8
URL
https://www.fit.vut.cz/research/publication/11790/
Plný text v Digitální knihovně
http://hdl.handle.net/
BibTex
@inproceedings{BUT155077, author="Johan Nikolaas Langenhoven {Brummer} and Anna {Silnova} and Lukáš {Burget} and Themos {Stafylakis}", title="Gaussian meta-embeddings for efficient scoring of a heavy-tailed PLDA model", booktitle="Proceedings of Odyssey 2018", year="2018", journal="Proceedings of Odyssey: The Speaker and Language Recognition Workshop Odyssey 2014, Joensuu, Finland", volume="2018", number="6", pages="349--356", publisher="International Speech Communication Association", address="Les Sables d'Olonne", doi="10.21437/Odyssey.2018-49", issn="2312-2846", url="https://www.fit.vut.cz/research/publication/11790/" }
Dokumenty
brummer_odyssey2018_51