Přístupnostní navigace
E-přihláška
Vyhledávání Vyhledat Zavřít
Detail publikačního výsledku
ROHDIN, J.; SILNOVA, A.; DIEZ SÁNCHEZ, M.; PLCHOT, O.; MATĚJKA, P.; BURGET, L.
Originální název
End-to-End DNN Based Speaker Recognition Inspired by i-Vector and PLDA
Anglický název
Druh
Stať ve sborníku v databázi WoS či Scopus
Originální abstrakt
Recently, several end-to-end speaker verification systems based ondeep neural networks (DNNs) have been proposed. These systemshave been proven to be competitive for text-dependent tasks as wellas for text-independent tasks with short utterances. However, fortext-independent tasks with longer utterances, end-to-end systemsare still outperformed by standard i-vector + PLDA systems. In thiswork, we develop an end-to-end speaker verification system that isinitialized to mimic an i-vector + PLDA baseline. The system isthen further trained in an end-to-end manner but regularized so thatit does not deviate too far from the initial system. In this way wemitigate overfitting which normally limits the performance of endto-end systems. The proposed system outperforms the i-vector +PLDA baseline on both long and short duration utterances.
Anglický abstrakt
Klíčová slova
Speaker verification, DNN, end-to-end
Klíčová slova v angličtině
Autoři
Rok RIV
2019
Vydáno
15.04.2018
Nakladatel
IEEE Signal Processing Society
Místo
Calgary
ISBN
978-1-5386-4658-8
Kniha
Proceedings of ICASSP
Strany od
4874
Strany do
4878
Strany počet
5
URL
https://www.fit.vut.cz/research/publication/11724/
BibTex
@inproceedings{BUT155046, author="Johan Andréas {Rohdin} and Anna {Silnova} and Mireia {Diez Sánchez} and Oldřich {Plchot} and Pavel {Matějka} and Lukáš {Burget}", title="End-to-End DNN Based Speaker Recognition Inspired by i-Vector and PLDA", booktitle="Proceedings of ICASSP", year="2018", pages="4874--4878", publisher="IEEE Signal Processing Society", address="Calgary", doi="10.1109/ICASSP.2018.8461958", isbn="978-1-5386-4658-8", url="https://www.fit.vut.cz/research/publication/11724/" }
Dokumenty
rohdin_icassp2018_0004874